From racks to pointed Hopf algebras
- Autores
- Andruskiewitsch, N.; Graña, M.
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved.
Fil:Andruskiewitsch, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Graña, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Adv. Math. 2003;178(2):177-243
- Materia
-
Pointed Hopf algebras
Quandles
Racks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00018708_v178_n2_p177_Andruskiewitsch
Ver los metadatos del registro completo
id |
BDUBAFCEN_dc5358edc0855ee73d2ebdc1fed6833f |
---|---|
oai_identifier_str |
paperaa:paper_00018708_v178_n2_p177_Andruskiewitsch |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
From racks to pointed Hopf algebrasAndruskiewitsch, N.Graña, M.Pointed Hopf algebrasQuandlesRacksA fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved.Fil:Andruskiewitsch, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Graña, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v178_n2_p177_AndruskiewitschAdv. Math. 2003;178(2):177-243reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:37Zpaperaa:paper_00018708_v178_n2_p177_AndruskiewitschInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.056Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
From racks to pointed Hopf algebras |
title |
From racks to pointed Hopf algebras |
spellingShingle |
From racks to pointed Hopf algebras Andruskiewitsch, N. Pointed Hopf algebras Quandles Racks |
title_short |
From racks to pointed Hopf algebras |
title_full |
From racks to pointed Hopf algebras |
title_fullStr |
From racks to pointed Hopf algebras |
title_full_unstemmed |
From racks to pointed Hopf algebras |
title_sort |
From racks to pointed Hopf algebras |
dc.creator.none.fl_str_mv |
Andruskiewitsch, N. Graña, M. |
author |
Andruskiewitsch, N. |
author_facet |
Andruskiewitsch, N. Graña, M. |
author_role |
author |
author2 |
Graña, M. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Pointed Hopf algebras Quandles Racks |
topic |
Pointed Hopf algebras Quandles Racks |
dc.description.none.fl_txt_mv |
A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved. Fil:Andruskiewitsch, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Graña, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00018708_v178_n2_p177_Andruskiewitsch |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v178_n2_p177_Andruskiewitsch |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Adv. Math. 2003;178(2):177-243 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340704930496512 |
score |
12.623145 |