From racks to pointed Hopf algebras

Autores
Andruskiewitsch, N.; Graña, M.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved.
Fil:Andruskiewitsch, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Graña, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Adv. Math. 2003;178(2):177-243
Materia
Pointed Hopf algebras
Quandles
Racks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00018708_v178_n2_p177_Andruskiewitsch

id BDUBAFCEN_dc5358edc0855ee73d2ebdc1fed6833f
oai_identifier_str paperaa:paper_00018708_v178_n2_p177_Andruskiewitsch
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling From racks to pointed Hopf algebrasAndruskiewitsch, N.Graña, M.Pointed Hopf algebrasQuandlesRacksA fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved.Fil:Andruskiewitsch, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Graña, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v178_n2_p177_AndruskiewitschAdv. Math. 2003;178(2):177-243reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:37Zpaperaa:paper_00018708_v178_n2_p177_AndruskiewitschInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.056Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv From racks to pointed Hopf algebras
title From racks to pointed Hopf algebras
spellingShingle From racks to pointed Hopf algebras
Andruskiewitsch, N.
Pointed Hopf algebras
Quandles
Racks
title_short From racks to pointed Hopf algebras
title_full From racks to pointed Hopf algebras
title_fullStr From racks to pointed Hopf algebras
title_full_unstemmed From racks to pointed Hopf algebras
title_sort From racks to pointed Hopf algebras
dc.creator.none.fl_str_mv Andruskiewitsch, N.
Graña, M.
author Andruskiewitsch, N.
author_facet Andruskiewitsch, N.
Graña, M.
author_role author
author2 Graña, M.
author2_role author
dc.subject.none.fl_str_mv Pointed Hopf algebras
Quandles
Racks
topic Pointed Hopf algebras
Quandles
Racks
dc.description.none.fl_txt_mv A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved.
Fil:Andruskiewitsch, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Graña, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from groups is the class of braided vector spaces (ℂX, cq), where X is a rack and q is a 2-cocycle on X with values in ℂx. Racks and cohomology of racks appeared also in the work of topologists. This leads us to the study of the structure of racks, their cohomology groups and the corresponding Nichols algebras. We will show advances in these three directions. We classify simple racks in group-theoretical terms; we describe projections of racks in terms of general cocycles; we introduce a general cohomology theory of racks containing properly the existing ones. We introduce a "Fourier transform" on racks of certain type; finally, we compute some new examples of finite-dimensional Nichols algebras. © 2003 Elsevier Inc. All rights reserved.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00018708_v178_n2_p177_Andruskiewitsch
url http://hdl.handle.net/20.500.12110/paper_00018708_v178_n2_p177_Andruskiewitsch
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Adv. Math. 2003;178(2):177-243
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340704930496512
score 12.623145