Testing equality between several populations covariance operators

Autores
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Sued, Raquel Mariela
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many situations, when dealing with several populations, equality of the covariance operators is assumed. An important issue is to study whether this assumption holds before making other inferences. In this paper, we develop a test for comparing covariance operators of several functional data samples. The proposed test is based on the Hilbert–Schmidt norm of the difference between estimated covariance operators. In particular, when dealing with two populations, the test statistic is just the squared norm of the difference between the two covariance operators estimators. The asymptotic behaviour of the test statistic under both the null hypothesis and local alternatives is obtained. The computation of the quantiles of the null asymptotic distribution is not feasible in practice. To overcome this problem, a bootstrap procedure is considered. The performance of the test statistic for small sample sizes is illustrated through a Monte Carlo study and on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Asymptotic Distribution
Bootstrap Calibration
Covariance Operators
Functional Data Analysis
Local Alternatives
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55562

id CONICETDig_5f64c5a5a762f3400a867bd44dd473ac
oai_identifier_str oai:ri.conicet.gov.ar:11336/55562
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Testing equality between several populations covariance operatorsBoente Boente, Graciela LinaRodriguez, Daniela AndreaSued, Raquel MarielaAsymptotic DistributionBootstrap CalibrationCovariance OperatorsFunctional Data AnalysisLocal Alternativeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In many situations, when dealing with several populations, equality of the covariance operators is assumed. An important issue is to study whether this assumption holds before making other inferences. In this paper, we develop a test for comparing covariance operators of several functional data samples. The proposed test is based on the Hilbert–Schmidt norm of the difference between estimated covariance operators. In particular, when dealing with two populations, the test statistic is just the squared norm of the difference between the two covariance operators estimators. The asymptotic behaviour of the test statistic under both the null hypothesis and local alternatives is obtained. The computation of the quantiles of the null asymptotic distribution is not feasible in practice. To overcome this problem, a bootstrap procedure is considered. The performance of the test statistic for small sample sizes is illustrated through a Monte Carlo study and on a real data set.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer Heidelberg2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55562Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Sued, Raquel Mariela; Testing equality between several populations covariance operators; Springer Heidelberg; Annals of the Institute of Statistical Mathematics; 70; 4; 8-2018; 919-9500020-3157CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10463-017-0613-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s10463-017-0613-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:57Zoai:ri.conicet.gov.ar:11336/55562instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:57.396CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Testing equality between several populations covariance operators
title Testing equality between several populations covariance operators
spellingShingle Testing equality between several populations covariance operators
Boente Boente, Graciela Lina
Asymptotic Distribution
Bootstrap Calibration
Covariance Operators
Functional Data Analysis
Local Alternatives
title_short Testing equality between several populations covariance operators
title_full Testing equality between several populations covariance operators
title_fullStr Testing equality between several populations covariance operators
title_full_unstemmed Testing equality between several populations covariance operators
title_sort Testing equality between several populations covariance operators
dc.creator.none.fl_str_mv Boente Boente, Graciela Lina
Rodriguez, Daniela Andrea
Sued, Raquel Mariela
author Boente Boente, Graciela Lina
author_facet Boente Boente, Graciela Lina
Rodriguez, Daniela Andrea
Sued, Raquel Mariela
author_role author
author2 Rodriguez, Daniela Andrea
Sued, Raquel Mariela
author2_role author
author
dc.subject.none.fl_str_mv Asymptotic Distribution
Bootstrap Calibration
Covariance Operators
Functional Data Analysis
Local Alternatives
topic Asymptotic Distribution
Bootstrap Calibration
Covariance Operators
Functional Data Analysis
Local Alternatives
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In many situations, when dealing with several populations, equality of the covariance operators is assumed. An important issue is to study whether this assumption holds before making other inferences. In this paper, we develop a test for comparing covariance operators of several functional data samples. The proposed test is based on the Hilbert–Schmidt norm of the difference between estimated covariance operators. In particular, when dealing with two populations, the test statistic is just the squared norm of the difference between the two covariance operators estimators. The asymptotic behaviour of the test statistic under both the null hypothesis and local alternatives is obtained. The computation of the quantiles of the null asymptotic distribution is not feasible in practice. To overcome this problem, a bootstrap procedure is considered. The performance of the test statistic for small sample sizes is illustrated through a Monte Carlo study and on a real data set.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In many situations, when dealing with several populations, equality of the covariance operators is assumed. An important issue is to study whether this assumption holds before making other inferences. In this paper, we develop a test for comparing covariance operators of several functional data samples. The proposed test is based on the Hilbert–Schmidt norm of the difference between estimated covariance operators. In particular, when dealing with two populations, the test statistic is just the squared norm of the difference between the two covariance operators estimators. The asymptotic behaviour of the test statistic under both the null hypothesis and local alternatives is obtained. The computation of the quantiles of the null asymptotic distribution is not feasible in practice. To overcome this problem, a bootstrap procedure is considered. The performance of the test statistic for small sample sizes is illustrated through a Monte Carlo study and on a real data set.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55562
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Sued, Raquel Mariela; Testing equality between several populations covariance operators; Springer Heidelberg; Annals of the Institute of Statistical Mathematics; 70; 4; 8-2018; 919-950
0020-3157
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55562
identifier_str_mv Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Sued, Raquel Mariela; Testing equality between several populations covariance operators; Springer Heidelberg; Annals of the Institute of Statistical Mathematics; 70; 4; 8-2018; 919-950
0020-3157
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10463-017-0613-1
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10463-017-0613-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613491767377920
score 13.070432