Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure
- Autores
- Allegrini, Franco; Braga, Jez W. B.; Moreira, Alessandro C. O.; Olivieri, Alejandro Cesar
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS).
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Braga, Jez W. B.. Universidade do Brasília; Brasil
Fil: Moreira, Alessandro C. O.. Universidade do Brasília; Brasil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
ERROR COVARIANCE MATRIX
MULTIVARIATE CALIBRATION
PENALIZED REGRESSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88366
Ver los metadatos del registro completo
id |
CONICETDig_803b12f5a7a70db7d4570441483f6ec5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88366 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structureAllegrini, FrancoBraga, Jez W. B.Moreira, Alessandro C. O.Olivieri, Alejandro CesarERROR COVARIANCE MATRIXMULTIVARIATE CALIBRATIONPENALIZED REGRESSIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS).Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Braga, Jez W. B.. Universidade do Brasília; BrasilFil: Moreira, Alessandro C. O.. Universidade do Brasília; BrasilFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaElsevier Science2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88366Allegrini, Franco; Braga, Jez W. B.; Moreira, Alessandro C. O.; Olivieri, Alejandro Cesar; Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure; Elsevier Science; Analytica Chimica Acta; 1011; 6-2018; 20-270003-2670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267018301739info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2018.02.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:36Zoai:ri.conicet.gov.ar:11336/88366instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:36.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure |
title |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure |
spellingShingle |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure Allegrini, Franco ERROR COVARIANCE MATRIX MULTIVARIATE CALIBRATION PENALIZED REGRESSION |
title_short |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure |
title_full |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure |
title_fullStr |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure |
title_full_unstemmed |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure |
title_sort |
Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure |
dc.creator.none.fl_str_mv |
Allegrini, Franco Braga, Jez W. B. Moreira, Alessandro C. O. Olivieri, Alejandro Cesar |
author |
Allegrini, Franco |
author_facet |
Allegrini, Franco Braga, Jez W. B. Moreira, Alessandro C. O. Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Braga, Jez W. B. Moreira, Alessandro C. O. Olivieri, Alejandro Cesar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ERROR COVARIANCE MATRIX MULTIVARIATE CALIBRATION PENALIZED REGRESSION |
topic |
ERROR COVARIANCE MATRIX MULTIVARIATE CALIBRATION PENALIZED REGRESSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Braga, Jez W. B.. Universidade do Brasília; Brasil Fil: Moreira, Alessandro C. O.. Universidade do Brasília; Brasil Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
description |
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88366 Allegrini, Franco; Braga, Jez W. B.; Moreira, Alessandro C. O.; Olivieri, Alejandro Cesar; Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure; Elsevier Science; Analytica Chimica Acta; 1011; 6-2018; 20-27 0003-2670 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88366 |
identifier_str_mv |
Allegrini, Franco; Braga, Jez W. B.; Moreira, Alessandro C. O.; Olivieri, Alejandro Cesar; Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure; Elsevier Science; Analytica Chimica Acta; 1011; 6-2018; 20-27 0003-2670 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267018301739 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2018.02.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270087987331072 |
score |
13.13397 |