A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics
- Autores
- Rosales, Marta Beatriz; Filipich, Carlos Pedro
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An analytical-numerical methodology for solving nonlinear problems governed by partial differential equations (PDE) is presented. The authors have previously used a method named WEM that consists essentially of the statement of extended trigonometric series of uniform convergence (UC). Theorems, demonstrated previously, ensure the UC of the essential functions and the exactness of the eigenvalues. WEM has been applied to nonlinear dynamic problems in two different ways: As a direct variational method and as a solution in the classical sense. The present tool is applied in the second fashion and starts from the statement of the extended trigonometric series for all the unknown functions and derivatives involved in the PDE. The nonlinearities are treated in the same way. The application of consistence conditions leads to recurrence relationships among the coefficients of the extended series. For the sake of comparison an initial conditions problem (the well-known Duffing oscillator) is numerically solved. Then a beam example is solved in detail: A linear (both material and geometrical) supported beam, with end springs of nonlinear analytical response, under the action of a dynamic distributed load and/or prescribed initial conditions, is studied. Two numerical examples are included.
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Filipich, Carlos Pedro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina - Materia
-
NONLINEAR BOUNDARY CONDITIONS
NONLINEAR VIBRATIONS
PARTIAL DIFFERENTIAL EQUATIONS
TRIGONOMETRIC RECURRENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/94814
Ver los metadatos del registro completo
id |
CONICETDig_5f0d663313b8cb3a49b8b6ae1b2299a0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/94814 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural DynamicsRosales, Marta BeatrizFilipich, Carlos PedroNONLINEAR BOUNDARY CONDITIONSNONLINEAR VIBRATIONSPARTIAL DIFFERENTIAL EQUATIONSTRIGONOMETRIC RECURRENCEhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2An analytical-numerical methodology for solving nonlinear problems governed by partial differential equations (PDE) is presented. The authors have previously used a method named WEM that consists essentially of the statement of extended trigonometric series of uniform convergence (UC). Theorems, demonstrated previously, ensure the UC of the essential functions and the exactness of the eigenvalues. WEM has been applied to nonlinear dynamic problems in two different ways: As a direct variational method and as a solution in the classical sense. The present tool is applied in the second fashion and starts from the statement of the extended trigonometric series for all the unknown functions and derivatives involved in the PDE. The nonlinearities are treated in the same way. The application of consistence conditions leads to recurrence relationships among the coefficients of the extended series. For the sake of comparison an initial conditions problem (the well-known Duffing oscillator) is numerically solved. Then a beam example is solved in detail: A linear (both material and geometrical) supported beam, with end springs of nonlinear analytical response, under the action of a dynamic distributed load and/or prescribed initial conditions, is studied. Two numerical examples are included.Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Filipich, Carlos Pedro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaSage Publications Ltd2006-06-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94814Rosales, Marta Beatriz; Filipich, Carlos Pedro; A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics; Sage Publications Ltd; Journal Of Vibration And Control; 12; 6; 9-6-2006; 557-5751077-54631741-2986CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/pdf/10.1177/1077546306063505info:eu-repo/semantics/altIdentifier/doi/10.1177/1077546306063505info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:12:41Zoai:ri.conicet.gov.ar:11336/94814instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:12:41.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics |
title |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics |
spellingShingle |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics Rosales, Marta Beatriz NONLINEAR BOUNDARY CONDITIONS NONLINEAR VIBRATIONS PARTIAL DIFFERENTIAL EQUATIONS TRIGONOMETRIC RECURRENCE |
title_short |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics |
title_full |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics |
title_fullStr |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics |
title_full_unstemmed |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics |
title_sort |
A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics |
dc.creator.none.fl_str_mv |
Rosales, Marta Beatriz Filipich, Carlos Pedro |
author |
Rosales, Marta Beatriz |
author_facet |
Rosales, Marta Beatriz Filipich, Carlos Pedro |
author_role |
author |
author2 |
Filipich, Carlos Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
NONLINEAR BOUNDARY CONDITIONS NONLINEAR VIBRATIONS PARTIAL DIFFERENTIAL EQUATIONS TRIGONOMETRIC RECURRENCE |
topic |
NONLINEAR BOUNDARY CONDITIONS NONLINEAR VIBRATIONS PARTIAL DIFFERENTIAL EQUATIONS TRIGONOMETRIC RECURRENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
An analytical-numerical methodology for solving nonlinear problems governed by partial differential equations (PDE) is presented. The authors have previously used a method named WEM that consists essentially of the statement of extended trigonometric series of uniform convergence (UC). Theorems, demonstrated previously, ensure the UC of the essential functions and the exactness of the eigenvalues. WEM has been applied to nonlinear dynamic problems in two different ways: As a direct variational method and as a solution in the classical sense. The present tool is applied in the second fashion and starts from the statement of the extended trigonometric series for all the unknown functions and derivatives involved in the PDE. The nonlinearities are treated in the same way. The application of consistence conditions leads to recurrence relationships among the coefficients of the extended series. For the sake of comparison an initial conditions problem (the well-known Duffing oscillator) is numerically solved. Then a beam example is solved in detail: A linear (both material and geometrical) supported beam, with end springs of nonlinear analytical response, under the action of a dynamic distributed load and/or prescribed initial conditions, is studied. Two numerical examples are included. Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Filipich, Carlos Pedro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina |
description |
An analytical-numerical methodology for solving nonlinear problems governed by partial differential equations (PDE) is presented. The authors have previously used a method named WEM that consists essentially of the statement of extended trigonometric series of uniform convergence (UC). Theorems, demonstrated previously, ensure the UC of the essential functions and the exactness of the eigenvalues. WEM has been applied to nonlinear dynamic problems in two different ways: As a direct variational method and as a solution in the classical sense. The present tool is applied in the second fashion and starts from the statement of the extended trigonometric series for all the unknown functions and derivatives involved in the PDE. The nonlinearities are treated in the same way. The application of consistence conditions leads to recurrence relationships among the coefficients of the extended series. For the sake of comparison an initial conditions problem (the well-known Duffing oscillator) is numerically solved. Then a beam example is solved in detail: A linear (both material and geometrical) supported beam, with end springs of nonlinear analytical response, under the action of a dynamic distributed load and/or prescribed initial conditions, is studied. Two numerical examples are included. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-06-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/94814 Rosales, Marta Beatriz; Filipich, Carlos Pedro; A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics; Sage Publications Ltd; Journal Of Vibration And Control; 12; 6; 9-6-2006; 557-575 1077-5463 1741-2986 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/94814 |
identifier_str_mv |
Rosales, Marta Beatriz; Filipich, Carlos Pedro; A Trigonometric Recurrence Algorithm for Solving Nonlinear Problems in Structural Dynamics; Sage Publications Ltd; Journal Of Vibration And Control; 12; 6; 9-6-2006; 557-575 1077-5463 1741-2986 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/pdf/10.1177/1077546306063505 info:eu-repo/semantics/altIdentifier/doi/10.1177/1077546306063505 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sage Publications Ltd |
publisher.none.fl_str_mv |
Sage Publications Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980663909679104 |
score |
12.993085 |