Nonlinear electrodynamics as a symmetric hyperbolic system
- Autores
- Abalos, Julio Fernando; Carrasco, Federico León; Goulart, Érico; Reula, Oscar Alejandro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the pointwise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a nonempty intersection, namely, that there exist families of symmetrizers in the sense of Geroch [26] which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet, and Euler-Heisenberg.
Fil: Abalos, Julio Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Carrasco, Federico León. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Goulart, Érico. CAPES Foundatio; Brasil
Fil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
NONLINEAR ELECTRODYNAMICS
SYMMETRIC HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATIONS
BORN INFELD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51184
Ver los metadatos del registro completo
id |
CONICETDig_99bab1dac45361a7d9b6d538192ac439 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51184 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonlinear electrodynamics as a symmetric hyperbolic systemAbalos, Julio FernandoCarrasco, Federico LeónGoulart, ÉricoReula, Oscar AlejandroNONLINEAR ELECTRODYNAMICSSYMMETRIC HYPERBOLICPARTIAL DIFFERENTIAL EQUATIONSBORN INFELDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the pointwise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a nonempty intersection, namely, that there exist families of symmetrizers in the sense of Geroch [26] which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet, and Euler-Heisenberg.Fil: Abalos, Julio Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Carrasco, Federico León. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Goulart, Érico. CAPES Foundatio; BrasilFil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Physical Society2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51184Abalos, Julio Fernando; Carrasco, Federico León; Goulart, Érico; Reula, Oscar Alejandro; Nonlinear electrodynamics as a symmetric hyperbolic system; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 92; 8; 10-2015; 1-191550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.92.084024info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.084024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:56Zoai:ri.conicet.gov.ar:11336/51184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:56.829CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonlinear electrodynamics as a symmetric hyperbolic system |
title |
Nonlinear electrodynamics as a symmetric hyperbolic system |
spellingShingle |
Nonlinear electrodynamics as a symmetric hyperbolic system Abalos, Julio Fernando NONLINEAR ELECTRODYNAMICS SYMMETRIC HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS BORN INFELD |
title_short |
Nonlinear electrodynamics as a symmetric hyperbolic system |
title_full |
Nonlinear electrodynamics as a symmetric hyperbolic system |
title_fullStr |
Nonlinear electrodynamics as a symmetric hyperbolic system |
title_full_unstemmed |
Nonlinear electrodynamics as a symmetric hyperbolic system |
title_sort |
Nonlinear electrodynamics as a symmetric hyperbolic system |
dc.creator.none.fl_str_mv |
Abalos, Julio Fernando Carrasco, Federico León Goulart, Érico Reula, Oscar Alejandro |
author |
Abalos, Julio Fernando |
author_facet |
Abalos, Julio Fernando Carrasco, Federico León Goulart, Érico Reula, Oscar Alejandro |
author_role |
author |
author2 |
Carrasco, Federico León Goulart, Érico Reula, Oscar Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
NONLINEAR ELECTRODYNAMICS SYMMETRIC HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS BORN INFELD |
topic |
NONLINEAR ELECTRODYNAMICS SYMMETRIC HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS BORN INFELD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the pointwise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a nonempty intersection, namely, that there exist families of symmetrizers in the sense of Geroch [26] which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet, and Euler-Heisenberg. Fil: Abalos, Julio Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Carrasco, Federico León. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Goulart, Érico. CAPES Foundatio; Brasil Fil: Reula, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the pointwise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a nonempty intersection, namely, that there exist families of symmetrizers in the sense of Geroch [26] which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet, and Euler-Heisenberg. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51184 Abalos, Julio Fernando; Carrasco, Federico León; Goulart, Érico; Reula, Oscar Alejandro; Nonlinear electrodynamics as a symmetric hyperbolic system; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 92; 8; 10-2015; 1-19 1550-7998 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51184 |
identifier_str_mv |
Abalos, Julio Fernando; Carrasco, Federico León; Goulart, Érico; Reula, Oscar Alejandro; Nonlinear electrodynamics as a symmetric hyperbolic system; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 92; 8; 10-2015; 1-19 1550-7998 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.92.084024 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.084024 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082805710192640 |
score |
13.22299 |