The packing coloring problem for lobsters and partner limited graphs

Autores
Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphs
Fil: Argiroffo, Gabriela Rut. Universidad Nacional de Rosario; Argentina
Fil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Packing Chromatic Number
Partner Limited Graph
Lobster
Caterpillar
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/30243

id CONICETDig_5e6b6cf4daeddab2d9f8f9a20c133697
oai_identifier_str oai:ri.conicet.gov.ar:11336/30243
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The packing coloring problem for lobsters and partner limited graphsArgiroffo, Gabriela RutNasini, Graciela LeonorTorres, Pablo DanielPacking Chromatic NumberPartner Limited GraphLobsterCaterpillarhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphsFil: Argiroffo, Gabriela Rut. Universidad Nacional de Rosario; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30243Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel; The packing coloring problem for lobsters and partner limited graphs; Elsevier Science; Discrete Applied Mathematics; 164; 8-2014; 373-3820166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.08.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X12003083info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:58Zoai:ri.conicet.gov.ar:11336/30243instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:58.695CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The packing coloring problem for lobsters and partner limited graphs
title The packing coloring problem for lobsters and partner limited graphs
spellingShingle The packing coloring problem for lobsters and partner limited graphs
Argiroffo, Gabriela Rut
Packing Chromatic Number
Partner Limited Graph
Lobster
Caterpillar
title_short The packing coloring problem for lobsters and partner limited graphs
title_full The packing coloring problem for lobsters and partner limited graphs
title_fullStr The packing coloring problem for lobsters and partner limited graphs
title_full_unstemmed The packing coloring problem for lobsters and partner limited graphs
title_sort The packing coloring problem for lobsters and partner limited graphs
dc.creator.none.fl_str_mv Argiroffo, Gabriela Rut
Nasini, Graciela Leonor
Torres, Pablo Daniel
author Argiroffo, Gabriela Rut
author_facet Argiroffo, Gabriela Rut
Nasini, Graciela Leonor
Torres, Pablo Daniel
author_role author
author2 Nasini, Graciela Leonor
Torres, Pablo Daniel
author2_role author
author
dc.subject.none.fl_str_mv Packing Chromatic Number
Partner Limited Graph
Lobster
Caterpillar
topic Packing Chromatic Number
Partner Limited Graph
Lobster
Caterpillar
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphs
Fil: Argiroffo, Gabriela Rut. Universidad Nacional de Rosario; Argentina
Fil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphs
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/30243
Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel; The packing coloring problem for lobsters and partner limited graphs; Elsevier Science; Discrete Applied Mathematics; 164; 8-2014; 373-382
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/30243
identifier_str_mv Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel; The packing coloring problem for lobsters and partner limited graphs; Elsevier Science; Discrete Applied Mathematics; 164; 8-2014; 373-382
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.08.008
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X12003083
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613730529181696
score 13.070432