The packing coloring problem for lobsters and partner limited graphs
- Autores
- Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphs
Fil: Argiroffo, Gabriela Rut. Universidad Nacional de Rosario; Argentina
Fil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Packing Chromatic Number
Partner Limited Graph
Lobster
Caterpillar - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30243
Ver los metadatos del registro completo
id |
CONICETDig_5e6b6cf4daeddab2d9f8f9a20c133697 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30243 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The packing coloring problem for lobsters and partner limited graphsArgiroffo, Gabriela RutNasini, Graciela LeonorTorres, Pablo DanielPacking Chromatic NumberPartner Limited GraphLobsterCaterpillarhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphsFil: Argiroffo, Gabriela Rut. Universidad Nacional de Rosario; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30243Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel; The packing coloring problem for lobsters and partner limited graphs; Elsevier Science; Discrete Applied Mathematics; 164; 8-2014; 373-3820166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.08.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X12003083info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:58Zoai:ri.conicet.gov.ar:11336/30243instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:58.695CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The packing coloring problem for lobsters and partner limited graphs |
title |
The packing coloring problem for lobsters and partner limited graphs |
spellingShingle |
The packing coloring problem for lobsters and partner limited graphs Argiroffo, Gabriela Rut Packing Chromatic Number Partner Limited Graph Lobster Caterpillar |
title_short |
The packing coloring problem for lobsters and partner limited graphs |
title_full |
The packing coloring problem for lobsters and partner limited graphs |
title_fullStr |
The packing coloring problem for lobsters and partner limited graphs |
title_full_unstemmed |
The packing coloring problem for lobsters and partner limited graphs |
title_sort |
The packing coloring problem for lobsters and partner limited graphs |
dc.creator.none.fl_str_mv |
Argiroffo, Gabriela Rut Nasini, Graciela Leonor Torres, Pablo Daniel |
author |
Argiroffo, Gabriela Rut |
author_facet |
Argiroffo, Gabriela Rut Nasini, Graciela Leonor Torres, Pablo Daniel |
author_role |
author |
author2 |
Nasini, Graciela Leonor Torres, Pablo Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Packing Chromatic Number Partner Limited Graph Lobster Caterpillar |
topic |
Packing Chromatic Number Partner Limited Graph Lobster Caterpillar |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphs Fil: Argiroffo, Gabriela Rut. Universidad Nacional de Rosario; Argentina Fil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A packing k-coloring of a graph G is a k-coloring such that the distance between two vertices having color i is at least i + 1. To compute the packing chromatic number is NP-hard, even restricted to trees, and it is known to be polynomial time solvable only for a few graph classes, including cographs and split graphs. In this work, we provide upper bounds for the packing chromatic number of lobsters and we prove that it can be computed in polynomial time for an infinite subclass of them, including caterpillars. In addition, we provide superclasses of split graphs where the packing chromatic number can be computed in polynomial time. Moreover, we prove that the packing chromatic number can be computed in polynomial time for the class of partner limited graphs, a superclass of cographs, including also P4-sparse and P4-tidy graphs |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30243 Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel; The packing coloring problem for lobsters and partner limited graphs; Elsevier Science; Discrete Applied Mathematics; 164; 8-2014; 373-382 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30243 |
identifier_str_mv |
Argiroffo, Gabriela Rut; Nasini, Graciela Leonor; Torres, Pablo Daniel; The packing coloring problem for lobsters and partner limited graphs; Elsevier Science; Discrete Applied Mathematics; 164; 8-2014; 373-382 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.08.008 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X12003083 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613730529181696 |
score |
13.070432 |