On the packing chromatic number of hypercubes
- Autores
- Torres, Pablo Daniel; Valencia Pabon, Mario
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The packing chromatic number χρ(G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i + 1. Goddard et al. [8] found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this paper, we obtain a better upper bound for χρ(Qn) and we compute the exact value of χρ(Qn) for 6 ≤ n ≤ 8.
Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valencia Pabon, Mario. Universite de Paris 13-nord. Laboratoire D'informatique de L'universite Paris-nord; Francia - Materia
-
Packing Chromatic Number
Upper Bound
Hypercube Graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21661
Ver los metadatos del registro completo
id |
CONICETDig_b8e935d349486f5be253d5e693f011df |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21661 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the packing chromatic number of hypercubesTorres, Pablo DanielValencia Pabon, MarioPacking Chromatic NumberUpper BoundHypercube Graphshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The packing chromatic number χρ(G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i + 1. Goddard et al. [8] found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this paper, we obtain a better upper bound for χρ(Qn) and we compute the exact value of χρ(Qn) for 6 ≤ n ≤ 8.Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valencia Pabon, Mario. Universite de Paris 13-nord. Laboratoire D'informatique de L'universite Paris-nord; FranciaElsevier Science2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21661Torres, Pablo Daniel; Valencia Pabon, Mario; On the packing chromatic number of hypercubes; Elsevier Science; Electronic Notes in Discrete Mathematics; 44; 11-2013; 263-2681571-0653CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2013.10.041info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571065313002576info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:17Zoai:ri.conicet.gov.ar:11336/21661instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:17.532CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the packing chromatic number of hypercubes |
title |
On the packing chromatic number of hypercubes |
spellingShingle |
On the packing chromatic number of hypercubes Torres, Pablo Daniel Packing Chromatic Number Upper Bound Hypercube Graphs |
title_short |
On the packing chromatic number of hypercubes |
title_full |
On the packing chromatic number of hypercubes |
title_fullStr |
On the packing chromatic number of hypercubes |
title_full_unstemmed |
On the packing chromatic number of hypercubes |
title_sort |
On the packing chromatic number of hypercubes |
dc.creator.none.fl_str_mv |
Torres, Pablo Daniel Valencia Pabon, Mario |
author |
Torres, Pablo Daniel |
author_facet |
Torres, Pablo Daniel Valencia Pabon, Mario |
author_role |
author |
author2 |
Valencia Pabon, Mario |
author2_role |
author |
dc.subject.none.fl_str_mv |
Packing Chromatic Number Upper Bound Hypercube Graphs |
topic |
Packing Chromatic Number Upper Bound Hypercube Graphs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The packing chromatic number χρ(G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i + 1. Goddard et al. [8] found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this paper, we obtain a better upper bound for χρ(Qn) and we compute the exact value of χρ(Qn) for 6 ≤ n ≤ 8. Fil: Torres, Pablo Daniel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Valencia Pabon, Mario. Universite de Paris 13-nord. Laboratoire D'informatique de L'universite Paris-nord; Francia |
description |
The packing chromatic number χρ(G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i + 1. Goddard et al. [8] found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this paper, we obtain a better upper bound for χρ(Qn) and we compute the exact value of χρ(Qn) for 6 ≤ n ≤ 8. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21661 Torres, Pablo Daniel; Valencia Pabon, Mario; On the packing chromatic number of hypercubes; Elsevier Science; Electronic Notes in Discrete Mathematics; 44; 11-2013; 263-268 1571-0653 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21661 |
identifier_str_mv |
Torres, Pablo Daniel; Valencia Pabon, Mario; On the packing chromatic number of hypercubes; Elsevier Science; Electronic Notes in Discrete Mathematics; 44; 11-2013; 263-268 1571-0653 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2013.10.041 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571065313002576 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614163102433280 |
score |
13.070432 |