On the b-coloring of P4-tidy graphs
- Autores
- Velasquez, C.I.B.; Bonomo, F.; Koch, I.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every t=χ(G),...,χb(G), and it is b-monotonic if χb(H1)<χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-tidy graphs (a generalization of many classes of graphs with few induced P4s) are b-continuous and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute theb-chromatic number for this class of graphs. © 2010 Elsevier B.V. All rights reserved.
Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Koch, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2011;159(1):60-68
- Materia
-
b-coloring
b-continuity
b-monotonicity
P4-tidy graphs
B-chromatic number
b-coloring
b-continuity
Chromatic number
Graph G
Induced subgraphs
Monotonicity
P4-tidy graphs
Polynomial-time algorithms
Color
Coloring
Graphic methods
Polynomial approximation
Graph theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v159_n1_p60_Velasquez
Ver los metadatos del registro completo
| id |
BDUBAFCEN_d1ec73bfccf2579e73624d0f9e3fdfbc |
|---|---|
| oai_identifier_str |
paperaa:paper_0166218X_v159_n1_p60_Velasquez |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
On the b-coloring of P4-tidy graphsVelasquez, C.I.B.Bonomo, F.Koch, I.b-coloringb-continuityb-monotonicityP4-tidy graphsB-chromatic numberb-coloringb-continuityChromatic numberGraph GInduced subgraphsMonotonicityP4-tidy graphsPolynomial-time algorithmsColorColoringGraphic methodsPolynomial approximationGraph theoryA b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every t=χ(G),...,χb(G), and it is b-monotonic if χb(H1)<χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-tidy graphs (a generalization of many classes of graphs with few induced P4s) are b-continuous and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute theb-chromatic number for this class of graphs. © 2010 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Koch, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v159_n1_p60_VelasquezDiscrete Appl Math 2011;159(1):60-68reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:20Zpaperaa:paper_0166218X_v159_n1_p60_VelasquezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:21.673Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
On the b-coloring of P4-tidy graphs |
| title |
On the b-coloring of P4-tidy graphs |
| spellingShingle |
On the b-coloring of P4-tidy graphs Velasquez, C.I.B. b-coloring b-continuity b-monotonicity P4-tidy graphs B-chromatic number b-coloring b-continuity Chromatic number Graph G Induced subgraphs Monotonicity P4-tidy graphs Polynomial-time algorithms Color Coloring Graphic methods Polynomial approximation Graph theory |
| title_short |
On the b-coloring of P4-tidy graphs |
| title_full |
On the b-coloring of P4-tidy graphs |
| title_fullStr |
On the b-coloring of P4-tidy graphs |
| title_full_unstemmed |
On the b-coloring of P4-tidy graphs |
| title_sort |
On the b-coloring of P4-tidy graphs |
| dc.creator.none.fl_str_mv |
Velasquez, C.I.B. Bonomo, F. Koch, I. |
| author |
Velasquez, C.I.B. |
| author_facet |
Velasquez, C.I.B. Bonomo, F. Koch, I. |
| author_role |
author |
| author2 |
Bonomo, F. Koch, I. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
b-coloring b-continuity b-monotonicity P4-tidy graphs B-chromatic number b-coloring b-continuity Chromatic number Graph G Induced subgraphs Monotonicity P4-tidy graphs Polynomial-time algorithms Color Coloring Graphic methods Polynomial approximation Graph theory |
| topic |
b-coloring b-continuity b-monotonicity P4-tidy graphs B-chromatic number b-coloring b-continuity Chromatic number Graph G Induced subgraphs Monotonicity P4-tidy graphs Polynomial-time algorithms Color Coloring Graphic methods Polynomial approximation Graph theory |
| dc.description.none.fl_txt_mv |
A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every t=χ(G),...,χb(G), and it is b-monotonic if χb(H1)<χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-tidy graphs (a generalization of many classes of graphs with few induced P4s) are b-continuous and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute theb-chromatic number for this class of graphs. © 2010 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Koch, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every t=χ(G),...,χb(G), and it is b-monotonic if χb(H1)<χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-tidy graphs (a generalization of many classes of graphs with few induced P4s) are b-continuous and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute theb-chromatic number for this class of graphs. © 2010 Elsevier B.V. All rights reserved. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v159_n1_p60_Velasquez |
| url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v159_n1_p60_Velasquez |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Discrete Appl Math 2011;159(1):60-68 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846142849748303872 |
| score |
12.712165 |