Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs
- Autores
- Leoni, Valeria Alejandra; Dobson, Maria Patricia
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a positive integer k, the {k}-packing function problem ({k}PF) is to find in a given graph G, a function f of maximum weight that assigns a non-negative integer to the vertices of G in such a way that the sum of f(v) over each closed neighborhood is at most k. This notion was recently introduced as a variation of the k-limited packing problem (kLP) introduced in 2010, where the function was supposed to assign a value in {0, 1}. For all the graph classes explored up to now, {k}PF and kLP have the same computational complexity. It is an open problem to determine a graph class where one of them is NP-complete and the other, polynomially solvable. In this work, we first prove that {k}PF is NP-complete for bipartite graphs, as kLP is known to be. We also obtain new graph classes where the complexity of these problems would coincide.
Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Dobson, Maria Patricia. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Bipartite Graph
Computational Complexity
F-Free Graph - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52744
Ver los metadatos del registro completo
| id |
CONICETDig_5cb9343c4009f0f1ea8ba2fe297a264d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52744 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphsLeoni, Valeria AlejandraDobson, Maria PatriciaBipartite GraphComputational ComplexityF-Free Graphhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Given a positive integer k, the {k}-packing function problem ({k}PF) is to find in a given graph G, a function f of maximum weight that assigns a non-negative integer to the vertices of G in such a way that the sum of f(v) over each closed neighborhood is at most k. This notion was recently introduced as a variation of the k-limited packing problem (kLP) introduced in 2010, where the function was supposed to assign a value in {0, 1}. For all the graph classes explored up to now, {k}PF and kLP have the same computational complexity. It is an open problem to determine a graph class where one of them is NP-complete and the other, polynomially solvable. In this work, we first prove that {k}PF is NP-complete for bipartite graphs, as kLP is known to be. We also obtain new graph classes where the complexity of these problems would coincide.Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Dobson, Maria Patricia. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52744Leoni, Valeria Alejandra; Dobson, Maria Patricia; Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs; Springer; Lecture Notes in Computer Science; 9849; 5-2016; 160-1650302-9743CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-45587-7_14info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-45587-7_14info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:11:39Zoai:ri.conicet.gov.ar:11336/52744instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:11:39.422CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs |
| title |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs |
| spellingShingle |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs Leoni, Valeria Alejandra Bipartite Graph Computational Complexity F-Free Graph |
| title_short |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs |
| title_full |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs |
| title_fullStr |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs |
| title_full_unstemmed |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs |
| title_sort |
Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs |
| dc.creator.none.fl_str_mv |
Leoni, Valeria Alejandra Dobson, Maria Patricia |
| author |
Leoni, Valeria Alejandra |
| author_facet |
Leoni, Valeria Alejandra Dobson, Maria Patricia |
| author_role |
author |
| author2 |
Dobson, Maria Patricia |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Bipartite Graph Computational Complexity F-Free Graph |
| topic |
Bipartite Graph Computational Complexity F-Free Graph |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Given a positive integer k, the {k}-packing function problem ({k}PF) is to find in a given graph G, a function f of maximum weight that assigns a non-negative integer to the vertices of G in such a way that the sum of f(v) over each closed neighborhood is at most k. This notion was recently introduced as a variation of the k-limited packing problem (kLP) introduced in 2010, where the function was supposed to assign a value in {0, 1}. For all the graph classes explored up to now, {k}PF and kLP have the same computational complexity. It is an open problem to determine a graph class where one of them is NP-complete and the other, polynomially solvable. In this work, we first prove that {k}PF is NP-complete for bipartite graphs, as kLP is known to be. We also obtain new graph classes where the complexity of these problems would coincide. Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Dobson, Maria Patricia. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
| description |
Given a positive integer k, the {k}-packing function problem ({k}PF) is to find in a given graph G, a function f of maximum weight that assigns a non-negative integer to the vertices of G in such a way that the sum of f(v) over each closed neighborhood is at most k. This notion was recently introduced as a variation of the k-limited packing problem (kLP) introduced in 2010, where the function was supposed to assign a value in {0, 1}. For all the graph classes explored up to now, {k}PF and kLP have the same computational complexity. It is an open problem to determine a graph class where one of them is NP-complete and the other, polynomially solvable. In this work, we first prove that {k}PF is NP-complete for bipartite graphs, as kLP is known to be. We also obtain new graph classes where the complexity of these problems would coincide. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52744 Leoni, Valeria Alejandra; Dobson, Maria Patricia; Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs; Springer; Lecture Notes in Computer Science; 9849; 5-2016; 160-165 0302-9743 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/52744 |
| identifier_str_mv |
Leoni, Valeria Alejandra; Dobson, Maria Patricia; Towards a polynomial equivalence between {k}-packing functions and k-limited packings in graphs; Springer; Lecture Notes in Computer Science; 9849; 5-2016; 160-165 0302-9743 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-45587-7_14 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-45587-7_14 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847425968954671104 |
| score |
13.10058 |