Liftings of Nichols algebras of diagonal type I. cartan type A
- Autores
- Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Garcia Iglesias, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Hopf Algebras
Nichols Algebras
Deformations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58327
Ver los metadatos del registro completo
id |
CONICETDig_1c3be85d65d99adc85dbad3b55fa15d9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58327 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Liftings of Nichols algebras of diagonal type I. cartan type AAndruskiewitsch, NicolasAngiono, Iván EzequielGarcia Iglesias, AgustinHopf AlgebrasNichols AlgebrasDeformationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras.Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Garcia Iglesias, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58327Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin; Liftings of Nichols algebras of diagonal type I. cartan type A; Oxford University Press; International Mathematics Research Notices; 2017; 9; 5-2017; 2793-28841073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/9/2793/3061030?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:05Zoai:ri.conicet.gov.ar:11336/58327instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:05.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Liftings of Nichols algebras of diagonal type I. cartan type A |
title |
Liftings of Nichols algebras of diagonal type I. cartan type A |
spellingShingle |
Liftings of Nichols algebras of diagonal type I. cartan type A Andruskiewitsch, Nicolas Hopf Algebras Nichols Algebras Deformations |
title_short |
Liftings of Nichols algebras of diagonal type I. cartan type A |
title_full |
Liftings of Nichols algebras of diagonal type I. cartan type A |
title_fullStr |
Liftings of Nichols algebras of diagonal type I. cartan type A |
title_full_unstemmed |
Liftings of Nichols algebras of diagonal type I. cartan type A |
title_sort |
Liftings of Nichols algebras of diagonal type I. cartan type A |
dc.creator.none.fl_str_mv |
Andruskiewitsch, Nicolas Angiono, Iván Ezequiel Garcia Iglesias, Agustin |
author |
Andruskiewitsch, Nicolas |
author_facet |
Andruskiewitsch, Nicolas Angiono, Iván Ezequiel Garcia Iglesias, Agustin |
author_role |
author |
author2 |
Angiono, Iván Ezequiel Garcia Iglesias, Agustin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hopf Algebras Nichols Algebras Deformations |
topic |
Hopf Algebras Nichols Algebras Deformations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras. Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Garcia Iglesias, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58327 Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin; Liftings of Nichols algebras of diagonal type I. cartan type A; Oxford University Press; International Mathematics Research Notices; 2017; 9; 5-2017; 2793-2884 1073-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58327 |
identifier_str_mv |
Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin; Liftings of Nichols algebras of diagonal type I. cartan type A; Oxford University Press; International Mathematics Research Notices; 2017; 9; 5-2017; 2793-2884 1073-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/9/2793/3061030?redirectedFrom=fulltext info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268708774346752 |
score |
13.13397 |