Liftings of Nichols algebras of diagonal type I. cartan type A

Autores
Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Garcia Iglesias, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Hopf Algebras
Nichols Algebras
Deformations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58327

id CONICETDig_1c3be85d65d99adc85dbad3b55fa15d9
oai_identifier_str oai:ri.conicet.gov.ar:11336/58327
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Liftings of Nichols algebras of diagonal type I. cartan type AAndruskiewitsch, NicolasAngiono, Iván EzequielGarcia Iglesias, AgustinHopf AlgebrasNichols AlgebrasDeformationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras.Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Garcia Iglesias, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58327Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin; Liftings of Nichols algebras of diagonal type I. cartan type A; Oxford University Press; International Mathematics Research Notices; 2017; 9; 5-2017; 2793-28841073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/9/2793/3061030?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:05Zoai:ri.conicet.gov.ar:11336/58327instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:05.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Liftings of Nichols algebras of diagonal type I. cartan type A
title Liftings of Nichols algebras of diagonal type I. cartan type A
spellingShingle Liftings of Nichols algebras of diagonal type I. cartan type A
Andruskiewitsch, Nicolas
Hopf Algebras
Nichols Algebras
Deformations
title_short Liftings of Nichols algebras of diagonal type I. cartan type A
title_full Liftings of Nichols algebras of diagonal type I. cartan type A
title_fullStr Liftings of Nichols algebras of diagonal type I. cartan type A
title_full_unstemmed Liftings of Nichols algebras of diagonal type I. cartan type A
title_sort Liftings of Nichols algebras of diagonal type I. cartan type A
dc.creator.none.fl_str_mv Andruskiewitsch, Nicolas
Angiono, Iván Ezequiel
Garcia Iglesias, Agustin
author Andruskiewitsch, Nicolas
author_facet Andruskiewitsch, Nicolas
Angiono, Iván Ezequiel
Garcia Iglesias, Agustin
author_role author
author2 Angiono, Iván Ezequiel
Garcia Iglesias, Agustin
author2_role author
author
dc.subject.none.fl_str_mv Hopf Algebras
Nichols Algebras
Deformations
topic Hopf Algebras
Nichols Algebras
Deformations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Angiono, Iván Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Garcia Iglesias, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description After the classification of the finite-dimensional Nichols algebras of diagonal type[17,18], the determination of its defining relations[7,6], and the verification of the generation in degree-s1 conjecture[6], there is still one step missing in the classification of complex finite-dimensional Hopf algebras with abelian group, without restrictions on the order of the latter: The computation of all deformations or liftings. A technique towards solving this question was developed in[5], built on cocycle deformations. In this paper, we elaborate further and present an explicit algorithm to compute liftings. In our main result we classify all liftings of finite-dimensional Nichols algebras of Cartan type A, over a cosemisimple Hopf algebra H. This extends[2], where it was assumed that the parameter is a root of unity of order >3 and that H is a commmutative group algebra. When the parameter is a root of unity of order 2 or 3, new phenomena appear: The quantum Serre relations can be deformed; this allows in turn the power root vectors to be deformed to elements in lower terms of the coradical filtration, but not necessarily in the group algebra. These phenomena are already present in the calculation of the liftings in type A2 at a parameter of order 2 or 3 over an abelian group[11,19], done by a different method using a computer program. As a byproduct of our calculations, we present new infinite families of finite-dimensional pointed Hopf algebras.
publishDate 2017
dc.date.none.fl_str_mv 2017-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58327
Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin; Liftings of Nichols algebras of diagonal type I. cartan type A; Oxford University Press; International Mathematics Research Notices; 2017; 9; 5-2017; 2793-2884
1073-7928
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58327
identifier_str_mv Andruskiewitsch, Nicolas; Angiono, Iván Ezequiel; Garcia Iglesias, Agustin; Liftings of Nichols algebras of diagonal type I. cartan type A; Oxford University Press; International Mathematics Research Notices; 2017; 9; 5-2017; 2793-2884
1073-7928
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/9/2793/3061030?redirectedFrom=fulltext
info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw103
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268708774346752
score 13.13397