Mutual information superadditivity and unitarity bounds

Autores
Casini, Horacio German; Testé, Eduardo; Torroba, Gonzalo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We derive the property of strong superadditivity of mutual information arising from the Markov property of the vacuum state in a conformal field theory and strong subadditivity of entanglement entropy. We show this inequality encodes unitarity bounds for different types of fields. These unitarity bounds are precisely the ones that saturate for free fields. This has a natural explanation in terms of the possibility of localizing algebras on null surfaces. A particular continuity property of mutual information characterizes free fields from the entropic point of view. We derive a general formula for the leading long distance term of the mutual information for regions of arbitrary shape which involves the modular flow of these regions. We obtain the general form of this leading term for two spheres with arbitrary orientations in spacetime, and for primary fields of any tensor representation. For free fields we further obtain the explicit form of the leading term for arbitrary regions with boundaries on null cones.
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Testé, Eduardo. University of California; Estados Unidos
Fil: Torroba, Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/217059

id CONICETDig_fbc8ea1548f97d6afd6a46883f5fdbc6
oai_identifier_str oai:ri.conicet.gov.ar:11336/217059
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mutual information superadditivity and unitarity boundsCasini, Horacio GermanTesté, EduardoTorroba, GonzaloCONFORMAL FIELD THEORYRENORMALIZATION GROUPhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We derive the property of strong superadditivity of mutual information arising from the Markov property of the vacuum state in a conformal field theory and strong subadditivity of entanglement entropy. We show this inequality encodes unitarity bounds for different types of fields. These unitarity bounds are precisely the ones that saturate for free fields. This has a natural explanation in terms of the possibility of localizing algebras on null surfaces. A particular continuity property of mutual information characterizes free fields from the entropic point of view. We derive a general formula for the leading long distance term of the mutual information for regions of arbitrary shape which involves the modular flow of these regions. We obtain the general form of this leading term for two spheres with arbitrary orientations in spacetime, and for primary fields of any tensor representation. For free fields we further obtain the explicit form of the leading term for arbitrary regions with boundaries on null cones.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Testé, Eduardo. University of California; Estados UnidosFil: Torroba, Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaSpringer2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217059Casini, Horacio German; Testé, Eduardo; Torroba, Gonzalo; Mutual information superadditivity and unitarity bounds; Springer; Journal of High Energy Physics; 2021; 9; 9-2021; 1-381029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2021)046info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:09Zoai:ri.conicet.gov.ar:11336/217059instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:10.015CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mutual information superadditivity and unitarity bounds
title Mutual information superadditivity and unitarity bounds
spellingShingle Mutual information superadditivity and unitarity bounds
Casini, Horacio German
CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
title_short Mutual information superadditivity and unitarity bounds
title_full Mutual information superadditivity and unitarity bounds
title_fullStr Mutual information superadditivity and unitarity bounds
title_full_unstemmed Mutual information superadditivity and unitarity bounds
title_sort Mutual information superadditivity and unitarity bounds
dc.creator.none.fl_str_mv Casini, Horacio German
Testé, Eduardo
Torroba, Gonzalo
author Casini, Horacio German
author_facet Casini, Horacio German
Testé, Eduardo
Torroba, Gonzalo
author_role author
author2 Testé, Eduardo
Torroba, Gonzalo
author2_role author
author
dc.subject.none.fl_str_mv CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
topic CONFORMAL FIELD THEORY
RENORMALIZATION GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We derive the property of strong superadditivity of mutual information arising from the Markov property of the vacuum state in a conformal field theory and strong subadditivity of entanglement entropy. We show this inequality encodes unitarity bounds for different types of fields. These unitarity bounds are precisely the ones that saturate for free fields. This has a natural explanation in terms of the possibility of localizing algebras on null surfaces. A particular continuity property of mutual information characterizes free fields from the entropic point of view. We derive a general formula for the leading long distance term of the mutual information for regions of arbitrary shape which involves the modular flow of these regions. We obtain the general form of this leading term for two spheres with arbitrary orientations in spacetime, and for primary fields of any tensor representation. For free fields we further obtain the explicit form of the leading term for arbitrary regions with boundaries on null cones.
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Testé, Eduardo. University of California; Estados Unidos
Fil: Torroba, Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description We derive the property of strong superadditivity of mutual information arising from the Markov property of the vacuum state in a conformal field theory and strong subadditivity of entanglement entropy. We show this inequality encodes unitarity bounds for different types of fields. These unitarity bounds are precisely the ones that saturate for free fields. This has a natural explanation in terms of the possibility of localizing algebras on null surfaces. A particular continuity property of mutual information characterizes free fields from the entropic point of view. We derive a general formula for the leading long distance term of the mutual information for regions of arbitrary shape which involves the modular flow of these regions. We obtain the general form of this leading term for two spheres with arbitrary orientations in spacetime, and for primary fields of any tensor representation. For free fields we further obtain the explicit form of the leading term for arbitrary regions with boundaries on null cones.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/217059
Casini, Horacio German; Testé, Eduardo; Torroba, Gonzalo; Mutual information superadditivity and unitarity bounds; Springer; Journal of High Energy Physics; 2021; 9; 9-2021; 1-38
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/217059
identifier_str_mv Casini, Horacio German; Testé, Eduardo; Torroba, Gonzalo; Mutual information superadditivity and unitarity bounds; Springer; Journal of High Energy Physics; 2021; 9; 9-2021; 1-38
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2021)046
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981220041883648
score 12.48226