Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease
- Autores
- Merk, Timon; Peterson, Victoria; Lipski, Witold J.; Blankertz, Benjamin; Turner, Robert S.; Li, Ningfei; Horn, Andreas; Richardson, Robert Mark; Neumann, Wolf-Julian
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson’s disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.
Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; Alemania
Fil: Peterson, Victoria. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Lipski, Witold J.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos
Fil: Blankertz, Benjamin. Technische Universität Berln; Alemania
Fil: Turner, Robert S.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos
Fil: Li, Ningfei. Charité Universitätsmedizin Berlin; Alemania
Fil: Horn, Andreas. Charité Universitätsmedizin Berlin; Alemania
Fil: Richardson, Robert Mark. Harvard Medical School; Estados Unidos
Fil: Neumann, Wolf-Julian. Charité Universitätsmedizin Berlin; Alemania - Materia
-
BASAL GANGLIA
COMPUTATIONAL BIOLOGY
DEEP BRAIN STIMULATION
HUMAN
MACHINE LEARNING
NEUROMODULATION
NEUROSCIENCE
SYSTEMS BIOLOGY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214465
Ver los metadatos del registro completo
id |
CONICETDig_5cc55fd404ad2383d31ac856c282651b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214465 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's diseaseMerk, TimonPeterson, VictoriaLipski, Witold J.Blankertz, BenjaminTurner, Robert S.Li, NingfeiHorn, AndreasRichardson, Robert MarkNeumann, Wolf-JulianBASAL GANGLIACOMPUTATIONAL BIOLOGYDEEP BRAIN STIMULATIONHUMANMACHINE LEARNINGNEUROMODULATIONNEUROSCIENCESYSTEMS BIOLOGYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson’s disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; AlemaniaFil: Peterson, Victoria. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Lipski, Witold J.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Blankertz, Benjamin. Technische Universität Berln; AlemaniaFil: Turner, Robert S.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Li, Ningfei. Charité Universitätsmedizin Berlin; AlemaniaFil: Horn, Andreas. Charité Universitätsmedizin Berlin; AlemaniaFil: Richardson, Robert Mark. Harvard Medical School; Estados UnidosFil: Neumann, Wolf-Julian. Charité Universitätsmedizin Berlin; AlemaniaeLife Sciences Publications2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214465Merk, Timon; Peterson, Victoria; Lipski, Witold J.; Blankertz, Benjamin; Turner, Robert S.; et al.; Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease; eLife Sciences Publications; eLife; 11; 5-2022; 1-272050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.75126info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:33:35Zoai:ri.conicet.gov.ar:11336/214465instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:33:36.252CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease |
title |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease |
spellingShingle |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease Merk, Timon BASAL GANGLIA COMPUTATIONAL BIOLOGY DEEP BRAIN STIMULATION HUMAN MACHINE LEARNING NEUROMODULATION NEUROSCIENCE SYSTEMS BIOLOGY |
title_short |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease |
title_full |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease |
title_fullStr |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease |
title_full_unstemmed |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease |
title_sort |
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease |
dc.creator.none.fl_str_mv |
Merk, Timon Peterson, Victoria Lipski, Witold J. Blankertz, Benjamin Turner, Robert S. Li, Ningfei Horn, Andreas Richardson, Robert Mark Neumann, Wolf-Julian |
author |
Merk, Timon |
author_facet |
Merk, Timon Peterson, Victoria Lipski, Witold J. Blankertz, Benjamin Turner, Robert S. Li, Ningfei Horn, Andreas Richardson, Robert Mark Neumann, Wolf-Julian |
author_role |
author |
author2 |
Peterson, Victoria Lipski, Witold J. Blankertz, Benjamin Turner, Robert S. Li, Ningfei Horn, Andreas Richardson, Robert Mark Neumann, Wolf-Julian |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
BASAL GANGLIA COMPUTATIONAL BIOLOGY DEEP BRAIN STIMULATION HUMAN MACHINE LEARNING NEUROMODULATION NEUROSCIENCE SYSTEMS BIOLOGY |
topic |
BASAL GANGLIA COMPUTATIONAL BIOLOGY DEEP BRAIN STIMULATION HUMAN MACHINE LEARNING NEUROMODULATION NEUROSCIENCE SYSTEMS BIOLOGY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson’s disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS. Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; Alemania Fil: Peterson, Victoria. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Lipski, Witold J.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos Fil: Blankertz, Benjamin. Technische Universität Berln; Alemania Fil: Turner, Robert S.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos Fil: Li, Ningfei. Charité Universitätsmedizin Berlin; Alemania Fil: Horn, Andreas. Charité Universitätsmedizin Berlin; Alemania Fil: Richardson, Robert Mark. Harvard Medical School; Estados Unidos Fil: Neumann, Wolf-Julian. Charité Universitätsmedizin Berlin; Alemania |
description |
Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson’s disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214465 Merk, Timon; Peterson, Victoria; Lipski, Witold J.; Blankertz, Benjamin; Turner, Robert S.; et al.; Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease; eLife Sciences Publications; eLife; 11; 5-2022; 1-27 2050-084X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/214465 |
identifier_str_mv |
Merk, Timon; Peterson, Victoria; Lipski, Witold J.; Blankertz, Benjamin; Turner, Robert S.; et al.; Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease; eLife Sciences Publications; eLife; 11; 5-2022; 1-27 2050-084X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.75126 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
eLife Sciences Publications |
publisher.none.fl_str_mv |
eLife Sciences Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083465840164864 |
score |
13.22299 |