Awakening: Predicting external stimulation to force transitions between different brain states

Autores
Deco, Gustavo; Purps, Josephine; Cabral, Joana; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Logothetis, Nikos K.; Kringelbach, Morten L.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A fundamental problem in systems neuroscience is how to force a transition from one brain state to another by external driven stimulation in, for example, wakefulness, sleep, coma, or neuropsychiatric diseases. This requires a quantitative and robust definition of a brain state, which has so far proven elusive. Here, we provide such a definition, which, together with whole-brain modeling, permits the systematic study in silico of how simulated brain stimulation can force transitions between different brain states in humans. Specifically, we use a unique neuroimaging dataset of human sleep to systematically investigate where to stimulate the brain to force an awakening of the human sleeping brain and vice versa.We show where this is possible using a definition of a brain state as an ensemble of "metastable substates," each with a probabilistic stability and occurrence frequency fitted by a generative whole-brain model, fine-tuned on the basis of the effective connectivity. Given the biophysical limitations of direct electrical stimulation (DES) of microcircuits, this opens exciting possibilities for discovering stimulation targets and selecting connectivity patterns that can ensure propagation of DES-induced neural excitation, potentially making it possible to create awakenings from complex cases of brain injury.
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España. Max Planck Institute for Human Cognitive and Brain Sciences; Alemania. Monash University; Australia
Fil: Purps, Josephine. Universitat Pompeu Fabra; España
Fil: Cabral, Joana. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Universidade do Minho; Portugal
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Laufs, Helmut. Christian Albrechts Universitat Zu Kiel; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Logothetis, Nikos K.. Goethe Universitat Frankfurt; Alemania. University of Manchester; Reino Unido. Christian Albrechts Universitat Zu Kiel; Alemania
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Universidade do Minho; Portugal
Materia
BRAIN STATES
COMPUTATIONAL NEUROSCIENCE
ELECTRICAL STIMULATION
METASTATES
MODELING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/147521

id CONICETDig_0f05f21c66a14f5e3f90662a813ba73b
oai_identifier_str oai:ri.conicet.gov.ar:11336/147521
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Awakening: Predicting external stimulation to force transitions between different brain statesDeco, GustavoPurps, JosephineCabral, JoanaTagliazucchi, Enzo RodolfoLaufs, HelmutLogothetis, Nikos K.Kringelbach, Morten L.BRAIN STATESCOMPUTATIONAL NEUROSCIENCEELECTRICAL STIMULATIONMETASTATESMODELINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A fundamental problem in systems neuroscience is how to force a transition from one brain state to another by external driven stimulation in, for example, wakefulness, sleep, coma, or neuropsychiatric diseases. This requires a quantitative and robust definition of a brain state, which has so far proven elusive. Here, we provide such a definition, which, together with whole-brain modeling, permits the systematic study in silico of how simulated brain stimulation can force transitions between different brain states in humans. Specifically, we use a unique neuroimaging dataset of human sleep to systematically investigate where to stimulate the brain to force an awakening of the human sleeping brain and vice versa.We show where this is possible using a definition of a brain state as an ensemble of "metastable substates," each with a probabilistic stability and occurrence frequency fitted by a generative whole-brain model, fine-tuned on the basis of the effective connectivity. Given the biophysical limitations of direct electrical stimulation (DES) of microcircuits, this opens exciting possibilities for discovering stimulation targets and selecting connectivity patterns that can ensure propagation of DES-induced neural excitation, potentially making it possible to create awakenings from complex cases of brain injury.Fil: Deco, Gustavo. Universitat Pompeu Fabra; España. Max Planck Institute for Human Cognitive and Brain Sciences; Alemania. Monash University; AustraliaFil: Purps, Josephine. Universitat Pompeu Fabra; EspañaFil: Cabral, Joana. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Universidade do Minho; PortugalFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Laufs, Helmut. Christian Albrechts Universitat Zu Kiel; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Logothetis, Nikos K.. Goethe Universitat Frankfurt; Alemania. University of Manchester; Reino Unido. Christian Albrechts Universitat Zu Kiel; AlemaniaFil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Universidade do Minho; PortugalNational Academy of Sciences2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147521Deco, Gustavo; Purps, Josephine; Cabral, Joana; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; et al.; Awakening: Predicting external stimulation to force transitions between different brain states; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 36; 9-2019; 18088-180970027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/lookup/doi/10.1073/pnas.1905534116info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1905534116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:20Zoai:ri.conicet.gov.ar:11336/147521instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:20.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Awakening: Predicting external stimulation to force transitions between different brain states
title Awakening: Predicting external stimulation to force transitions between different brain states
spellingShingle Awakening: Predicting external stimulation to force transitions between different brain states
Deco, Gustavo
BRAIN STATES
COMPUTATIONAL NEUROSCIENCE
ELECTRICAL STIMULATION
METASTATES
MODELING
title_short Awakening: Predicting external stimulation to force transitions between different brain states
title_full Awakening: Predicting external stimulation to force transitions between different brain states
title_fullStr Awakening: Predicting external stimulation to force transitions between different brain states
title_full_unstemmed Awakening: Predicting external stimulation to force transitions between different brain states
title_sort Awakening: Predicting external stimulation to force transitions between different brain states
dc.creator.none.fl_str_mv Deco, Gustavo
Purps, Josephine
Cabral, Joana
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Logothetis, Nikos K.
Kringelbach, Morten L.
author Deco, Gustavo
author_facet Deco, Gustavo
Purps, Josephine
Cabral, Joana
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Logothetis, Nikos K.
Kringelbach, Morten L.
author_role author
author2 Purps, Josephine
Cabral, Joana
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Logothetis, Nikos K.
Kringelbach, Morten L.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv BRAIN STATES
COMPUTATIONAL NEUROSCIENCE
ELECTRICAL STIMULATION
METASTATES
MODELING
topic BRAIN STATES
COMPUTATIONAL NEUROSCIENCE
ELECTRICAL STIMULATION
METASTATES
MODELING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A fundamental problem in systems neuroscience is how to force a transition from one brain state to another by external driven stimulation in, for example, wakefulness, sleep, coma, or neuropsychiatric diseases. This requires a quantitative and robust definition of a brain state, which has so far proven elusive. Here, we provide such a definition, which, together with whole-brain modeling, permits the systematic study in silico of how simulated brain stimulation can force transitions between different brain states in humans. Specifically, we use a unique neuroimaging dataset of human sleep to systematically investigate where to stimulate the brain to force an awakening of the human sleeping brain and vice versa.We show where this is possible using a definition of a brain state as an ensemble of "metastable substates," each with a probabilistic stability and occurrence frequency fitted by a generative whole-brain model, fine-tuned on the basis of the effective connectivity. Given the biophysical limitations of direct electrical stimulation (DES) of microcircuits, this opens exciting possibilities for discovering stimulation targets and selecting connectivity patterns that can ensure propagation of DES-induced neural excitation, potentially making it possible to create awakenings from complex cases of brain injury.
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España. Max Planck Institute for Human Cognitive and Brain Sciences; Alemania. Monash University; Australia
Fil: Purps, Josephine. Universitat Pompeu Fabra; España
Fil: Cabral, Joana. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Universidade do Minho; Portugal
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Laufs, Helmut. Christian Albrechts Universitat Zu Kiel; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Logothetis, Nikos K.. Goethe Universitat Frankfurt; Alemania. University of Manchester; Reino Unido. Christian Albrechts Universitat Zu Kiel; Alemania
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Universidade do Minho; Portugal
description A fundamental problem in systems neuroscience is how to force a transition from one brain state to another by external driven stimulation in, for example, wakefulness, sleep, coma, or neuropsychiatric diseases. This requires a quantitative and robust definition of a brain state, which has so far proven elusive. Here, we provide such a definition, which, together with whole-brain modeling, permits the systematic study in silico of how simulated brain stimulation can force transitions between different brain states in humans. Specifically, we use a unique neuroimaging dataset of human sleep to systematically investigate where to stimulate the brain to force an awakening of the human sleeping brain and vice versa.We show where this is possible using a definition of a brain state as an ensemble of "metastable substates," each with a probabilistic stability and occurrence frequency fitted by a generative whole-brain model, fine-tuned on the basis of the effective connectivity. Given the biophysical limitations of direct electrical stimulation (DES) of microcircuits, this opens exciting possibilities for discovering stimulation targets and selecting connectivity patterns that can ensure propagation of DES-induced neural excitation, potentially making it possible to create awakenings from complex cases of brain injury.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/147521
Deco, Gustavo; Purps, Josephine; Cabral, Joana; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; et al.; Awakening: Predicting external stimulation to force transitions between different brain states; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 36; 9-2019; 18088-18097
0027-8424
CONICET Digital
CONICET
url http://hdl.handle.net/11336/147521
identifier_str_mv Deco, Gustavo; Purps, Josephine; Cabral, Joana; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; et al.; Awakening: Predicting external stimulation to force transitions between different brain states; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 116; 36; 9-2019; 18088-18097
0027-8424
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/lookup/doi/10.1073/pnas.1905534116
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1905534116
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980392725905408
score 12.993085