Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation
- Autores
- Merk, Timon; Peterson, Victoria; Köhler, Richard; Haufe, Stefan; Richardson, R. Mark; Neumann, Wolf Julian
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations.
Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; Alemania
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos
Fil: Köhler, Richard. Charité – Universitätsmedizin Berlin; Alemania
Fil: Haufe, Stefan. Charité – Universitätsmedizin Berlin; Alemania
Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos
Fil: Neumann, Wolf Julian. Charité – Universitätsmedizin Berlin; Alemania - Materia
-
ADAPTIVE DEEP BRAIN STIMULATION
BRAIN-COMPUTER INTERFACE
CLOSED-LOOP DBS
MOVEMENT DISORDERS
NEURAL DECODING
REAL-TIME CLASSIFICATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212352
Ver los metadatos del registro completo
id |
CONICETDig_14d289dccccccb45b2ba7b0e9d0ecfdb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212352 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulationMerk, TimonPeterson, VictoriaKöhler, RichardHaufe, StefanRichardson, R. MarkNeumann, Wolf JulianADAPTIVE DEEP BRAIN STIMULATIONBRAIN-COMPUTER INTERFACECLOSED-LOOP DBSMOVEMENT DISORDERSNEURAL DECODINGREAL-TIME CLASSIFICATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations.Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; AlemaniaFil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados UnidosFil: Köhler, Richard. Charité – Universitätsmedizin Berlin; AlemaniaFil: Haufe, Stefan. Charité – Universitätsmedizin Berlin; AlemaniaFil: Richardson, R. Mark. Harvard Medical School; Estados UnidosFil: Neumann, Wolf Julian. Charité – Universitätsmedizin Berlin; AlemaniaAcademic Press Inc Elsevier Science2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212352Merk, Timon; Peterson, Victoria; Köhler, Richard; Haufe, Stefan; Richardson, R. Mark; et al.; Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation; Academic Press Inc Elsevier Science; Experimental Neurology; 351; 5-2022; 1-170014-4886CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0014488622000188info:eu-repo/semantics/altIdentifier/doi/10.1016/j.expneurol.2022.113993info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:07Zoai:ri.conicet.gov.ar:11336/212352instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:07.467CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation |
title |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation |
spellingShingle |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation Merk, Timon ADAPTIVE DEEP BRAIN STIMULATION BRAIN-COMPUTER INTERFACE CLOSED-LOOP DBS MOVEMENT DISORDERS NEURAL DECODING REAL-TIME CLASSIFICATION |
title_short |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation |
title_full |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation |
title_fullStr |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation |
title_full_unstemmed |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation |
title_sort |
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation |
dc.creator.none.fl_str_mv |
Merk, Timon Peterson, Victoria Köhler, Richard Haufe, Stefan Richardson, R. Mark Neumann, Wolf Julian |
author |
Merk, Timon |
author_facet |
Merk, Timon Peterson, Victoria Köhler, Richard Haufe, Stefan Richardson, R. Mark Neumann, Wolf Julian |
author_role |
author |
author2 |
Peterson, Victoria Köhler, Richard Haufe, Stefan Richardson, R. Mark Neumann, Wolf Julian |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ADAPTIVE DEEP BRAIN STIMULATION BRAIN-COMPUTER INTERFACE CLOSED-LOOP DBS MOVEMENT DISORDERS NEURAL DECODING REAL-TIME CLASSIFICATION |
topic |
ADAPTIVE DEEP BRAIN STIMULATION BRAIN-COMPUTER INTERFACE CLOSED-LOOP DBS MOVEMENT DISORDERS NEURAL DECODING REAL-TIME CLASSIFICATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations. Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; Alemania Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos Fil: Köhler, Richard. Charité – Universitätsmedizin Berlin; Alemania Fil: Haufe, Stefan. Charité – Universitätsmedizin Berlin; Alemania Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos Fil: Neumann, Wolf Julian. Charité – Universitätsmedizin Berlin; Alemania |
description |
Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212352 Merk, Timon; Peterson, Victoria; Köhler, Richard; Haufe, Stefan; Richardson, R. Mark; et al.; Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation; Academic Press Inc Elsevier Science; Experimental Neurology; 351; 5-2022; 1-17 0014-4886 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212352 |
identifier_str_mv |
Merk, Timon; Peterson, Victoria; Köhler, Richard; Haufe, Stefan; Richardson, R. Mark; et al.; Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation; Academic Press Inc Elsevier Science; Experimental Neurology; 351; 5-2022; 1-17 0014-4886 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0014488622000188 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.expneurol.2022.113993 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980752203972608 |
score |
12.993085 |