Local field potentials in a pre-motor region predict learned vocal sequences
- Autores
- Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; Arneodo, Ezequiel Matías; Gentner, Timothy Q.; Gilja, Vikash
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.
Fil: Brown, Daril E.. University of California at San Diego; Estados Unidos
Fil: Chavez, Jairo I.. University of California at San Diego; Estados Unidos
Fil: Nguyen, Derek H.. University of California at San Diego; Estados Unidos
Fil: Kadwory, Adam. University of California at San Diego; Estados Unidos
Fil: Voytek, Bradley. University of California at San Diego; Estados Unidos
Fil: Arneodo, Ezequiel Matías. University of California at San Diego; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gentner, Timothy Q.. University of California at San Diego; Estados Unidos
Fil: Gilja, Vikash. University of California at San Diego; Estados Unidos - Materia
-
Neuroscience
Birdsong
Brain Machine Interfaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/174758
Ver los metadatos del registro completo
| id |
CONICETDig_68d9e4c28bb150fb31a105726bbcbd46 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/174758 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Local field potentials in a pre-motor region predict learned vocal sequencesBrown, Daril E.Chavez, Jairo I.Nguyen, Derek H.Kadwory, AdamVoytek, BradleyArneodo, Ezequiel MatíasGentner, Timothy Q.Gilja, VikashNeuroscienceBirdsongBrain Machine Interfaceshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.Fil: Brown, Daril E.. University of California at San Diego; Estados UnidosFil: Chavez, Jairo I.. University of California at San Diego; Estados UnidosFil: Nguyen, Derek H.. University of California at San Diego; Estados UnidosFil: Kadwory, Adam. University of California at San Diego; Estados UnidosFil: Voytek, Bradley. University of California at San Diego; Estados UnidosFil: Arneodo, Ezequiel Matías. University of California at San Diego; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Gentner, Timothy Q.. University of California at San Diego; Estados UnidosFil: Gilja, Vikash. University of California at San Diego; Estados UnidosPlos2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174758Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; et al.; Local field potentials in a pre-motor region predict learned vocal sequences; Plos; PLOS Computational Biology; 17; 9; 9-2021; 1-381553-7358CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1008100info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008100info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:34:32Zoai:ri.conicet.gov.ar:11336/174758instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:34:33.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Local field potentials in a pre-motor region predict learned vocal sequences |
| title |
Local field potentials in a pre-motor region predict learned vocal sequences |
| spellingShingle |
Local field potentials in a pre-motor region predict learned vocal sequences Brown, Daril E. Neuroscience Birdsong Brain Machine Interfaces |
| title_short |
Local field potentials in a pre-motor region predict learned vocal sequences |
| title_full |
Local field potentials in a pre-motor region predict learned vocal sequences |
| title_fullStr |
Local field potentials in a pre-motor region predict learned vocal sequences |
| title_full_unstemmed |
Local field potentials in a pre-motor region predict learned vocal sequences |
| title_sort |
Local field potentials in a pre-motor region predict learned vocal sequences |
| dc.creator.none.fl_str_mv |
Brown, Daril E. Chavez, Jairo I. Nguyen, Derek H. Kadwory, Adam Voytek, Bradley Arneodo, Ezequiel Matías Gentner, Timothy Q. Gilja, Vikash |
| author |
Brown, Daril E. |
| author_facet |
Brown, Daril E. Chavez, Jairo I. Nguyen, Derek H. Kadwory, Adam Voytek, Bradley Arneodo, Ezequiel Matías Gentner, Timothy Q. Gilja, Vikash |
| author_role |
author |
| author2 |
Chavez, Jairo I. Nguyen, Derek H. Kadwory, Adam Voytek, Bradley Arneodo, Ezequiel Matías Gentner, Timothy Q. Gilja, Vikash |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
Neuroscience Birdsong Brain Machine Interfaces |
| topic |
Neuroscience Birdsong Brain Machine Interfaces |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors. Fil: Brown, Daril E.. University of California at San Diego; Estados Unidos Fil: Chavez, Jairo I.. University of California at San Diego; Estados Unidos Fil: Nguyen, Derek H.. University of California at San Diego; Estados Unidos Fil: Kadwory, Adam. University of California at San Diego; Estados Unidos Fil: Voytek, Bradley. University of California at San Diego; Estados Unidos Fil: Arneodo, Ezequiel Matías. University of California at San Diego; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Gentner, Timothy Q.. University of California at San Diego; Estados Unidos Fil: Gilja, Vikash. University of California at San Diego; Estados Unidos |
| description |
Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/174758 Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; et al.; Local field potentials in a pre-motor region predict learned vocal sequences; Plos; PLOS Computational Biology; 17; 9; 9-2021; 1-38 1553-7358 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/174758 |
| identifier_str_mv |
Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; et al.; Local field potentials in a pre-motor region predict learned vocal sequences; Plos; PLOS Computational Biology; 17; 9; 9-2021; 1-38 1553-7358 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1008100 info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008100 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Plos |
| publisher.none.fl_str_mv |
Plos |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976750367113216 |
| score |
13.087074 |