Local field potentials in a pre-motor region predict learned vocal sequences

Autores
Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; Arneodo, Ezequiel Matías; Gentner, Timothy Q.; Gilja, Vikash
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.
Fil: Brown, Daril E.. University of California at San Diego; Estados Unidos
Fil: Chavez, Jairo I.. University of California at San Diego; Estados Unidos
Fil: Nguyen, Derek H.. University of California at San Diego; Estados Unidos
Fil: Kadwory, Adam. University of California at San Diego; Estados Unidos
Fil: Voytek, Bradley. University of California at San Diego; Estados Unidos
Fil: Arneodo, Ezequiel Matías. University of California at San Diego; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gentner, Timothy Q.. University of California at San Diego; Estados Unidos
Fil: Gilja, Vikash. University of California at San Diego; Estados Unidos
Materia
Neuroscience
Birdsong
Brain Machine Interfaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/174758

id CONICETDig_68d9e4c28bb150fb31a105726bbcbd46
oai_identifier_str oai:ri.conicet.gov.ar:11336/174758
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local field potentials in a pre-motor region predict learned vocal sequencesBrown, Daril E.Chavez, Jairo I.Nguyen, Derek H.Kadwory, AdamVoytek, BradleyArneodo, Ezequiel MatíasGentner, Timothy Q.Gilja, VikashNeuroscienceBirdsongBrain Machine Interfaceshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.Fil: Brown, Daril E.. University of California at San Diego; Estados UnidosFil: Chavez, Jairo I.. University of California at San Diego; Estados UnidosFil: Nguyen, Derek H.. University of California at San Diego; Estados UnidosFil: Kadwory, Adam. University of California at San Diego; Estados UnidosFil: Voytek, Bradley. University of California at San Diego; Estados UnidosFil: Arneodo, Ezequiel Matías. University of California at San Diego; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Gentner, Timothy Q.. University of California at San Diego; Estados UnidosFil: Gilja, Vikash. University of California at San Diego; Estados UnidosPlos2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174758Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; et al.; Local field potentials in a pre-motor region predict learned vocal sequences; Plos; PLOS Computational Biology; 17; 9; 9-2021; 1-381553-7358CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1008100info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008100info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:34:32Zoai:ri.conicet.gov.ar:11336/174758instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:34:33.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local field potentials in a pre-motor region predict learned vocal sequences
title Local field potentials in a pre-motor region predict learned vocal sequences
spellingShingle Local field potentials in a pre-motor region predict learned vocal sequences
Brown, Daril E.
Neuroscience
Birdsong
Brain Machine Interfaces
title_short Local field potentials in a pre-motor region predict learned vocal sequences
title_full Local field potentials in a pre-motor region predict learned vocal sequences
title_fullStr Local field potentials in a pre-motor region predict learned vocal sequences
title_full_unstemmed Local field potentials in a pre-motor region predict learned vocal sequences
title_sort Local field potentials in a pre-motor region predict learned vocal sequences
dc.creator.none.fl_str_mv Brown, Daril E.
Chavez, Jairo I.
Nguyen, Derek H.
Kadwory, Adam
Voytek, Bradley
Arneodo, Ezequiel Matías
Gentner, Timothy Q.
Gilja, Vikash
author Brown, Daril E.
author_facet Brown, Daril E.
Chavez, Jairo I.
Nguyen, Derek H.
Kadwory, Adam
Voytek, Bradley
Arneodo, Ezequiel Matías
Gentner, Timothy Q.
Gilja, Vikash
author_role author
author2 Chavez, Jairo I.
Nguyen, Derek H.
Kadwory, Adam
Voytek, Bradley
Arneodo, Ezequiel Matías
Gentner, Timothy Q.
Gilja, Vikash
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Neuroscience
Birdsong
Brain Machine Interfaces
topic Neuroscience
Birdsong
Brain Machine Interfaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.
Fil: Brown, Daril E.. University of California at San Diego; Estados Unidos
Fil: Chavez, Jairo I.. University of California at San Diego; Estados Unidos
Fil: Nguyen, Derek H.. University of California at San Diego; Estados Unidos
Fil: Kadwory, Adam. University of California at San Diego; Estados Unidos
Fil: Voytek, Bradley. University of California at San Diego; Estados Unidos
Fil: Arneodo, Ezequiel Matías. University of California at San Diego; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gentner, Timothy Q.. University of California at San Diego; Estados Unidos
Fil: Gilja, Vikash. University of California at San Diego; Estados Unidos
description Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/174758
Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; et al.; Local field potentials in a pre-motor region predict learned vocal sequences; Plos; PLOS Computational Biology; 17; 9; 9-2021; 1-38
1553-7358
CONICET Digital
CONICET
url http://hdl.handle.net/11336/174758
identifier_str_mv Brown, Daril E.; Chavez, Jairo I.; Nguyen, Derek H.; Kadwory, Adam; Voytek, Bradley; et al.; Local field potentials in a pre-motor region predict learned vocal sequences; Plos; PLOS Computational Biology; 17; 9; 9-2021; 1-38
1553-7358
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1008100
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008100
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Plos
publisher.none.fl_str_mv Plos
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847976750367113216
score 13.087074