Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
- Autores
- Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Efthymiopoulos, C.. Research Center for Astronomy and Applied Mathematics, Academy of Athens; Grecia
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina - Materia
-
Chaos
Instability
Dynamics
Arnold diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15512
Ver los metadatos del registro completo
id |
CONICETDig_49255970acad8254ce53c6b2891f874f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15512 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the riverCincotta, Pablo MiguelEfthymiopoulos, C.Giordano, Claudia MarcelaMestre, Martin FedericoChaosInstabilityDynamicsArnold diffusionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement.Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Efthymiopoulos, C.. Research Center for Astronomy and Applied Mathematics, Academy of Athens; GreciaFil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaElsevier Science2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15512Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico; Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river; Elsevier Science; Physica D - Nonlinear Phenomena; 266; 1-2014; 49-640167-2789enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167278913002819info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2013.10.005info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1310.3158info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:52Zoai:ri.conicet.gov.ar:11336/15512instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:52.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river |
title |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river |
spellingShingle |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river Cincotta, Pablo Miguel Chaos Instability Dynamics Arnold diffusion |
title_short |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river |
title_full |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river |
title_fullStr |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river |
title_full_unstemmed |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river |
title_sort |
Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river |
dc.creator.none.fl_str_mv |
Cincotta, Pablo Miguel Efthymiopoulos, C. Giordano, Claudia Marcela Mestre, Martin Federico |
author |
Cincotta, Pablo Miguel |
author_facet |
Cincotta, Pablo Miguel Efthymiopoulos, C. Giordano, Claudia Marcela Mestre, Martin Federico |
author_role |
author |
author2 |
Efthymiopoulos, C. Giordano, Claudia Marcela Mestre, Martin Federico |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Chaos Instability Dynamics Arnold diffusion |
topic |
Chaos Instability Dynamics Arnold diffusion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement. Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina Fil: Efthymiopoulos, C.. Research Center for Astronomy and Applied Mathematics, Academy of Athens; Grecia Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina |
description |
We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15512 Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico; Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river; Elsevier Science; Physica D - Nonlinear Phenomena; 266; 1-2014; 49-64 0167-2789 |
url |
http://hdl.handle.net/11336/15512 |
identifier_str_mv |
Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico; Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river; Elsevier Science; Physica D - Nonlinear Phenomena; 266; 1-2014; 49-64 0167-2789 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167278913002819 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2013.10.005 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1310.3158 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614002271846400 |
score |
13.070432 |