Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river

Autores
Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Efthymiopoulos, C.. Research Center for Astronomy and Applied Mathematics, Academy of Athens; Grecia
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Materia
Chaos
Instability
Dynamics
Arnold diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15512

id CONICETDig_49255970acad8254ce53c6b2891f874f
oai_identifier_str oai:ri.conicet.gov.ar:11336/15512
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the riverCincotta, Pablo MiguelEfthymiopoulos, C.Giordano, Claudia MarcelaMestre, Martin FedericoChaosInstabilityDynamicsArnold diffusionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement.Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Efthymiopoulos, C.. Research Center for Astronomy and Applied Mathematics, Academy of Athens; GreciaFil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaElsevier Science2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15512Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico; Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river; Elsevier Science; Physica D - Nonlinear Phenomena; 266; 1-2014; 49-640167-2789enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167278913002819info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2013.10.005info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1310.3158info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:52Zoai:ri.conicet.gov.ar:11336/15512instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:52.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
title Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
spellingShingle Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
Cincotta, Pablo Miguel
Chaos
Instability
Dynamics
Arnold diffusion
title_short Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
title_full Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
title_fullStr Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
title_full_unstemmed Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
title_sort Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river
dc.creator.none.fl_str_mv Cincotta, Pablo Miguel
Efthymiopoulos, C.
Giordano, Claudia Marcela
Mestre, Martin Federico
author Cincotta, Pablo Miguel
author_facet Cincotta, Pablo Miguel
Efthymiopoulos, C.
Giordano, Claudia Marcela
Mestre, Martin Federico
author_role author
author2 Efthymiopoulos, C.
Giordano, Claudia Marcela
Mestre, Martin Federico
author2_role author
author
author
dc.subject.none.fl_str_mv Chaos
Instability
Dynamics
Arnold diffusion
topic Chaos
Instability
Dynamics
Arnold diffusion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Efthymiopoulos, C.. Research Center for Astronomy and Applied Mathematics, Academy of Athens; Grecia
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
description We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15512
Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico; Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river; Elsevier Science; Physica D - Nonlinear Phenomena; 266; 1-2014; 49-64
0167-2789
url http://hdl.handle.net/11336/15512
identifier_str_mv Cincotta, Pablo Miguel; Efthymiopoulos, C.; Giordano, Claudia Marcela; Mestre, Martin Federico; Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river; Elsevier Science; Physica D - Nonlinear Phenomena; 266; 1-2014; 49-64
0167-2789
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167278913002819
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2013.10.005
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1310.3158
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614002271846400
score 13.070432