Modular Hamiltonians on the null plane and the Markov property of the vacuum state
- Autores
- Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Testé Lino, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
-
ENTANGLEMENT ENTROPY
MARKOV PROPERTY
MODULAR HAMILTONIAN
NULL PLANE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72688
Ver los metadatos del registro completo
| id |
CONICETDig_f0e6fb997b70e3db2e4947a0a4aaf7b6 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72688 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Modular Hamiltonians on the null plane and the Markov property of the vacuum stateCasini, Horacio GermanTesté Lino, EduardoTorroba, GonzaloENTANGLEMENT ENTROPYMARKOV PROPERTYMODULAR HAMILTONIANNULL PLANEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Testé Lino, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaIOP Publishing2017-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72688Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo; Modular Hamiltonians on the null plane and the Markov property of the vacuum state; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 50; 36; 8-8-2017; 364001/1-291751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/aa7eaainfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aa7eaa/metainfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.10656info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:38:20Zoai:ri.conicet.gov.ar:11336/72688instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:38:20.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state |
| title |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state |
| spellingShingle |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state Casini, Horacio German ENTANGLEMENT ENTROPY MARKOV PROPERTY MODULAR HAMILTONIAN NULL PLANE |
| title_short |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state |
| title_full |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state |
| title_fullStr |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state |
| title_full_unstemmed |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state |
| title_sort |
Modular Hamiltonians on the null plane and the Markov property of the vacuum state |
| dc.creator.none.fl_str_mv |
Casini, Horacio German Testé Lino, Eduardo Torroba, Gonzalo |
| author |
Casini, Horacio German |
| author_facet |
Casini, Horacio German Testé Lino, Eduardo Torroba, Gonzalo |
| author_role |
author |
| author2 |
Testé Lino, Eduardo Torroba, Gonzalo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ENTANGLEMENT ENTROPY MARKOV PROPERTY MODULAR HAMILTONIAN NULL PLANE |
| topic |
ENTANGLEMENT ENTROPY MARKOV PROPERTY MODULAR HAMILTONIAN NULL PLANE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy. Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Testé Lino, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina |
| description |
We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-08-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72688 Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo; Modular Hamiltonians on the null plane and the Markov property of the vacuum state; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 50; 36; 8-8-2017; 364001/1-29 1751-8113 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/72688 |
| identifier_str_mv |
Casini, Horacio German; Testé Lino, Eduardo; Torroba, Gonzalo; Modular Hamiltonians on the null plane and the Markov property of the vacuum state; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 50; 36; 8-8-2017; 364001/1-29 1751-8113 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/aa7eaa info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aa7eaa/meta info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.10656 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
IOP Publishing |
| publisher.none.fl_str_mv |
IOP Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782038858792960 |
| score |
12.982451 |