New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting

Autores
Arias, Renee S.; Sobolev, Victor S.; Massa, Alicia N.; Orner, Valerie A.; Walk, Travis E.; Ballard, Linda L.; Simpson, Sheron A.; Puppala, Naveen; Scheffler, Brian E.; de Blas, Francisco Javier; Seijo, José Guillermo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Aflatoxin contamination in peanut seeds is still a serious problem for the industry and human health. No stable aflatoxin resistant cultivars have yet been produced, and given the narrow genetic background of cultivated peanuts, wild species became an important source of genetic diversity. Wild peanut seeds, however, are not abundant, thus, an effective method of screening for aflatoxin accumulation using minimal seeds is highly desirable. In addition, keeping record of genetic fingerprinting of each accession would be very useful for breeding programs and for the identification of accessions within germplasm collections. Results: In this study, we report a method of screening for aflatoxin accumulation that is applicable to the small-size seeds of wild peanuts, increases the reliability by testing seed viability, and records the genetic fingerprinting of the samples. Aflatoxin levels observed among 20 wild peanut species varied from zero to 19000 ng.g-1 and 155 ng.g-1 of aflatoxin B1 and B2, respectively. We report the screening of 373 molecular markers, including 288 novel SSRs, tested on 20 wild peanut species. Multivariate analysis by Neighbor-Joining, Principal Component Analysis and 3D-Principal Coordinate Analysis using 134 (36 %) transferable markers, in general grouped the samples according to their reported genomes. The best 88 markers, those with high fluorescence, good scorability and transferability, are reported with BLAST results. High quality markers (total 98) that discriminated genomes are reported. A high quality marker with UPIC score 16 (16 out of 20 species discriminated) had significant hits on BLAST2GO to a pentatricopeptide-repeat protein, another marker with score 5 had hits on UDP-D-apiose synthase, and a third one with score 12 had BLASTn hits on La-RP 1B protein. Together, these three markers discriminated all 20 species tested. Conclusions: This study provides a reliable method to screen wild species of peanut for aflatoxin resistance using minimal seeds. In addition we report 288 new SSRs for peanut, and a cost-effective combination of markers sufficient to discriminate all 20 species tested. These tools can be used for the systematic search of aflatoxin resistant germplasm keeping record of the genetic fingerprinting of the accessions tested for breeding purpose.
Fil: Arias, Renee S.. National Peanut Research Laboratory; Estados Unidos
Fil: Sobolev, Victor S.. National Peanut Research Laboratory; Estados Unidos
Fil: Massa, Alicia N.. National Peanut Research Laboratory; Estados Unidos
Fil: Orner, Valerie A.. National Peanut Research Laboratory; Estados Unidos
Fil: Walk, Travis E.. National Peanut Research Laboratory; Estados Unidos
Fil: Ballard, Linda L.. Usda Agricultural Research Service; Estados Unidos
Fil: Simpson, Sheron A.. Usda Agricultural Research Service; Estados Unidos
Fil: Puppala, Naveen. New Mexico State University Las Cruces; México
Fil: Scheffler, Brian E.. Usda Agricultural Research Service; Estados Unidos
Fil: de Blas, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Seijo, José Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina
Materia
Aflatoxin
Arachis
Aspergillus Flavus
Fingerprinting
Groundnut
Molecular Markers
Peanut
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80794

id CONICETDig_5a846ef4a883e97ad985d02cc3e606cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/80794
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprintingArias, Renee S.Sobolev, Victor S.Massa, Alicia N.Orner, Valerie A.Walk, Travis E.Ballard, Linda L.Simpson, Sheron A.Puppala, NaveenScheffler, Brian E.de Blas, Francisco JavierSeijo, José GuillermoAflatoxinArachisAspergillus FlavusFingerprintingGroundnutMolecular MarkersPeanuthttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Aflatoxin contamination in peanut seeds is still a serious problem for the industry and human health. No stable aflatoxin resistant cultivars have yet been produced, and given the narrow genetic background of cultivated peanuts, wild species became an important source of genetic diversity. Wild peanut seeds, however, are not abundant, thus, an effective method of screening for aflatoxin accumulation using minimal seeds is highly desirable. In addition, keeping record of genetic fingerprinting of each accession would be very useful for breeding programs and for the identification of accessions within germplasm collections. Results: In this study, we report a method of screening for aflatoxin accumulation that is applicable to the small-size seeds of wild peanuts, increases the reliability by testing seed viability, and records the genetic fingerprinting of the samples. Aflatoxin levels observed among 20 wild peanut species varied from zero to 19000 ng.g-1 and 155 ng.g-1 of aflatoxin B1 and B2, respectively. We report the screening of 373 molecular markers, including 288 novel SSRs, tested on 20 wild peanut species. Multivariate analysis by Neighbor-Joining, Principal Component Analysis and 3D-Principal Coordinate Analysis using 134 (36 %) transferable markers, in general grouped the samples according to their reported genomes. The best 88 markers, those with high fluorescence, good scorability and transferability, are reported with BLAST results. High quality markers (total 98) that discriminated genomes are reported. A high quality marker with UPIC score 16 (16 out of 20 species discriminated) had significant hits on BLAST2GO to a pentatricopeptide-repeat protein, another marker with score 5 had hits on UDP-D-apiose synthase, and a third one with score 12 had BLASTn hits on La-RP 1B protein. Together, these three markers discriminated all 20 species tested. Conclusions: This study provides a reliable method to screen wild species of peanut for aflatoxin resistance using minimal seeds. In addition we report 288 new SSRs for peanut, and a cost-effective combination of markers sufficient to discriminate all 20 species tested. These tools can be used for the systematic search of aflatoxin resistant germplasm keeping record of the genetic fingerprinting of the accessions tested for breeding purpose.Fil: Arias, Renee S.. National Peanut Research Laboratory; Estados UnidosFil: Sobolev, Victor S.. National Peanut Research Laboratory; Estados UnidosFil: Massa, Alicia N.. National Peanut Research Laboratory; Estados UnidosFil: Orner, Valerie A.. National Peanut Research Laboratory; Estados UnidosFil: Walk, Travis E.. National Peanut Research Laboratory; Estados UnidosFil: Ballard, Linda L.. Usda Agricultural Research Service; Estados UnidosFil: Simpson, Sheron A.. Usda Agricultural Research Service; Estados UnidosFil: Puppala, Naveen. New Mexico State University Las Cruces; MéxicoFil: Scheffler, Brian E.. Usda Agricultural Research Service; Estados UnidosFil: de Blas, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Seijo, José Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaBioMed Central2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80794Arias, Renee S.; Sobolev, Victor S.; Massa, Alicia N.; Orner, Valerie A.; Walk, Travis E.; et al.; New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting; BioMed Central; BMC Plant Biology; 18; 1; 8-2018; 1-131471-2229CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-018-1355-9info:eu-repo/semantics/altIdentifier/doi/10.1186%2Fs12870-018-1355-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:30Zoai:ri.conicet.gov.ar:11336/80794instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:30.583CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
title New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
spellingShingle New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
Arias, Renee S.
Aflatoxin
Arachis
Aspergillus Flavus
Fingerprinting
Groundnut
Molecular Markers
Peanut
title_short New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
title_full New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
title_fullStr New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
title_full_unstemmed New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
title_sort New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting
dc.creator.none.fl_str_mv Arias, Renee S.
Sobolev, Victor S.
Massa, Alicia N.
Orner, Valerie A.
Walk, Travis E.
Ballard, Linda L.
Simpson, Sheron A.
Puppala, Naveen
Scheffler, Brian E.
de Blas, Francisco Javier
Seijo, José Guillermo
author Arias, Renee S.
author_facet Arias, Renee S.
Sobolev, Victor S.
Massa, Alicia N.
Orner, Valerie A.
Walk, Travis E.
Ballard, Linda L.
Simpson, Sheron A.
Puppala, Naveen
Scheffler, Brian E.
de Blas, Francisco Javier
Seijo, José Guillermo
author_role author
author2 Sobolev, Victor S.
Massa, Alicia N.
Orner, Valerie A.
Walk, Travis E.
Ballard, Linda L.
Simpson, Sheron A.
Puppala, Naveen
Scheffler, Brian E.
de Blas, Francisco Javier
Seijo, José Guillermo
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Aflatoxin
Arachis
Aspergillus Flavus
Fingerprinting
Groundnut
Molecular Markers
Peanut
topic Aflatoxin
Arachis
Aspergillus Flavus
Fingerprinting
Groundnut
Molecular Markers
Peanut
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Aflatoxin contamination in peanut seeds is still a serious problem for the industry and human health. No stable aflatoxin resistant cultivars have yet been produced, and given the narrow genetic background of cultivated peanuts, wild species became an important source of genetic diversity. Wild peanut seeds, however, are not abundant, thus, an effective method of screening for aflatoxin accumulation using minimal seeds is highly desirable. In addition, keeping record of genetic fingerprinting of each accession would be very useful for breeding programs and for the identification of accessions within germplasm collections. Results: In this study, we report a method of screening for aflatoxin accumulation that is applicable to the small-size seeds of wild peanuts, increases the reliability by testing seed viability, and records the genetic fingerprinting of the samples. Aflatoxin levels observed among 20 wild peanut species varied from zero to 19000 ng.g-1 and 155 ng.g-1 of aflatoxin B1 and B2, respectively. We report the screening of 373 molecular markers, including 288 novel SSRs, tested on 20 wild peanut species. Multivariate analysis by Neighbor-Joining, Principal Component Analysis and 3D-Principal Coordinate Analysis using 134 (36 %) transferable markers, in general grouped the samples according to their reported genomes. The best 88 markers, those with high fluorescence, good scorability and transferability, are reported with BLAST results. High quality markers (total 98) that discriminated genomes are reported. A high quality marker with UPIC score 16 (16 out of 20 species discriminated) had significant hits on BLAST2GO to a pentatricopeptide-repeat protein, another marker with score 5 had hits on UDP-D-apiose synthase, and a third one with score 12 had BLASTn hits on La-RP 1B protein. Together, these three markers discriminated all 20 species tested. Conclusions: This study provides a reliable method to screen wild species of peanut for aflatoxin resistance using minimal seeds. In addition we report 288 new SSRs for peanut, and a cost-effective combination of markers sufficient to discriminate all 20 species tested. These tools can be used for the systematic search of aflatoxin resistant germplasm keeping record of the genetic fingerprinting of the accessions tested for breeding purpose.
Fil: Arias, Renee S.. National Peanut Research Laboratory; Estados Unidos
Fil: Sobolev, Victor S.. National Peanut Research Laboratory; Estados Unidos
Fil: Massa, Alicia N.. National Peanut Research Laboratory; Estados Unidos
Fil: Orner, Valerie A.. National Peanut Research Laboratory; Estados Unidos
Fil: Walk, Travis E.. National Peanut Research Laboratory; Estados Unidos
Fil: Ballard, Linda L.. Usda Agricultural Research Service; Estados Unidos
Fil: Simpson, Sheron A.. Usda Agricultural Research Service; Estados Unidos
Fil: Puppala, Naveen. New Mexico State University Las Cruces; México
Fil: Scheffler, Brian E.. Usda Agricultural Research Service; Estados Unidos
Fil: de Blas, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Seijo, José Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina
description Aflatoxin contamination in peanut seeds is still a serious problem for the industry and human health. No stable aflatoxin resistant cultivars have yet been produced, and given the narrow genetic background of cultivated peanuts, wild species became an important source of genetic diversity. Wild peanut seeds, however, are not abundant, thus, an effective method of screening for aflatoxin accumulation using minimal seeds is highly desirable. In addition, keeping record of genetic fingerprinting of each accession would be very useful for breeding programs and for the identification of accessions within germplasm collections. Results: In this study, we report a method of screening for aflatoxin accumulation that is applicable to the small-size seeds of wild peanuts, increases the reliability by testing seed viability, and records the genetic fingerprinting of the samples. Aflatoxin levels observed among 20 wild peanut species varied from zero to 19000 ng.g-1 and 155 ng.g-1 of aflatoxin B1 and B2, respectively. We report the screening of 373 molecular markers, including 288 novel SSRs, tested on 20 wild peanut species. Multivariate analysis by Neighbor-Joining, Principal Component Analysis and 3D-Principal Coordinate Analysis using 134 (36 %) transferable markers, in general grouped the samples according to their reported genomes. The best 88 markers, those with high fluorescence, good scorability and transferability, are reported with BLAST results. High quality markers (total 98) that discriminated genomes are reported. A high quality marker with UPIC score 16 (16 out of 20 species discriminated) had significant hits on BLAST2GO to a pentatricopeptide-repeat protein, another marker with score 5 had hits on UDP-D-apiose synthase, and a third one with score 12 had BLASTn hits on La-RP 1B protein. Together, these three markers discriminated all 20 species tested. Conclusions: This study provides a reliable method to screen wild species of peanut for aflatoxin resistance using minimal seeds. In addition we report 288 new SSRs for peanut, and a cost-effective combination of markers sufficient to discriminate all 20 species tested. These tools can be used for the systematic search of aflatoxin resistant germplasm keeping record of the genetic fingerprinting of the accessions tested for breeding purpose.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80794
Arias, Renee S.; Sobolev, Victor S.; Massa, Alicia N.; Orner, Valerie A.; Walk, Travis E.; et al.; New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting; BioMed Central; BMC Plant Biology; 18; 1; 8-2018; 1-13
1471-2229
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80794
identifier_str_mv Arias, Renee S.; Sobolev, Victor S.; Massa, Alicia N.; Orner, Valerie A.; Walk, Travis E.; et al.; New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting; BioMed Central; BMC Plant Biology; 18; 1; 8-2018; 1-13
1471-2229
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-018-1355-9
info:eu-repo/semantics/altIdentifier/doi/10.1186%2Fs12870-018-1355-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614241984708608
score 13.069144