Reducing the gap between experts' knowledge and data: the TOM4D methodology
- Autores
- Pomponio, Laura Matilde; Le Goc, Marc
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dynamic process modelling is generally accomplished from experts' knowledge through Knowledge Engineering (KE); however, the obtained models are sometimes deficient for interpreting the input data flow coming from the real process evolution perceived through sensors. This shortcoming lies in specialists' tacit knowledge, difficult to elicit, and in that certain process phenomena are unknown or unforeseen to experts. An alternative to complement the modelling task is to resort to a Knowledge Discovery in Database (KDD) process. Nevertheless, most KE approaches do not address the processing of knowledge obtained from data. This work proposes a KE methodology called Timed Observation Modelling For Diagnosis (TOM4D) which allows building dynamic process models from experts' knowledge and data where the obtained models can be compared and combined with models obtained through a KDD process in order to define a model more suitable to the dynamic process reality.
Fil: Pomponio, Laura Matilde. Laboratoire des Sciences de l; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Le Goc, Marc. Laboratoire des Sciences de l; Francia - Materia
-
Methodologies And Tools
Data And Knowledge
Knowledge Engineering
Knowledge Modelling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15164
Ver los metadatos del registro completo
id |
CONICETDig_5a69808fc21bc5c8a4db6f3c2973b130 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15164 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reducing the gap between experts' knowledge and data: the TOM4D methodologyPomponio, Laura MatildeLe Goc, MarcMethodologies And ToolsData And KnowledgeKnowledge EngineeringKnowledge Modellinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Dynamic process modelling is generally accomplished from experts' knowledge through Knowledge Engineering (KE); however, the obtained models are sometimes deficient for interpreting the input data flow coming from the real process evolution perceived through sensors. This shortcoming lies in specialists' tacit knowledge, difficult to elicit, and in that certain process phenomena are unknown or unforeseen to experts. An alternative to complement the modelling task is to resort to a Knowledge Discovery in Database (KDD) process. Nevertheless, most KE approaches do not address the processing of knowledge obtained from data. This work proposes a KE methodology called Timed Observation Modelling For Diagnosis (TOM4D) which allows building dynamic process models from experts' knowledge and data where the obtained models can be compared and combined with models obtained through a KDD process in order to define a model more suitable to the dynamic process reality.Fil: Pomponio, Laura Matilde. Laboratoire des Sciences de l; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Le Goc, Marc. Laboratoire des Sciences de l; FranciaElsevier Science2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15164Pomponio, Laura Matilde; Le Goc, Marc; Reducing the gap between experts' knowledge and data: the TOM4D methodology; Elsevier Science; Data & Knowledge Engineering; 94; Part A; 11-2014; 1-370169-023Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.datak.2014.07.006info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169023X14000652info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:16Zoai:ri.conicet.gov.ar:11336/15164instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:16.84CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reducing the gap between experts' knowledge and data: the TOM4D methodology |
title |
Reducing the gap between experts' knowledge and data: the TOM4D methodology |
spellingShingle |
Reducing the gap between experts' knowledge and data: the TOM4D methodology Pomponio, Laura Matilde Methodologies And Tools Data And Knowledge Knowledge Engineering Knowledge Modelling |
title_short |
Reducing the gap between experts' knowledge and data: the TOM4D methodology |
title_full |
Reducing the gap between experts' knowledge and data: the TOM4D methodology |
title_fullStr |
Reducing the gap between experts' knowledge and data: the TOM4D methodology |
title_full_unstemmed |
Reducing the gap between experts' knowledge and data: the TOM4D methodology |
title_sort |
Reducing the gap between experts' knowledge and data: the TOM4D methodology |
dc.creator.none.fl_str_mv |
Pomponio, Laura Matilde Le Goc, Marc |
author |
Pomponio, Laura Matilde |
author_facet |
Pomponio, Laura Matilde Le Goc, Marc |
author_role |
author |
author2 |
Le Goc, Marc |
author2_role |
author |
dc.subject.none.fl_str_mv |
Methodologies And Tools Data And Knowledge Knowledge Engineering Knowledge Modelling |
topic |
Methodologies And Tools Data And Knowledge Knowledge Engineering Knowledge Modelling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dynamic process modelling is generally accomplished from experts' knowledge through Knowledge Engineering (KE); however, the obtained models are sometimes deficient for interpreting the input data flow coming from the real process evolution perceived through sensors. This shortcoming lies in specialists' tacit knowledge, difficult to elicit, and in that certain process phenomena are unknown or unforeseen to experts. An alternative to complement the modelling task is to resort to a Knowledge Discovery in Database (KDD) process. Nevertheless, most KE approaches do not address the processing of knowledge obtained from data. This work proposes a KE methodology called Timed Observation Modelling For Diagnosis (TOM4D) which allows building dynamic process models from experts' knowledge and data where the obtained models can be compared and combined with models obtained through a KDD process in order to define a model more suitable to the dynamic process reality. Fil: Pomponio, Laura Matilde. Laboratoire des Sciences de l; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina Fil: Le Goc, Marc. Laboratoire des Sciences de l; Francia |
description |
Dynamic process modelling is generally accomplished from experts' knowledge through Knowledge Engineering (KE); however, the obtained models are sometimes deficient for interpreting the input data flow coming from the real process evolution perceived through sensors. This shortcoming lies in specialists' tacit knowledge, difficult to elicit, and in that certain process phenomena are unknown or unforeseen to experts. An alternative to complement the modelling task is to resort to a Knowledge Discovery in Database (KDD) process. Nevertheless, most KE approaches do not address the processing of knowledge obtained from data. This work proposes a KE methodology called Timed Observation Modelling For Diagnosis (TOM4D) which allows building dynamic process models from experts' knowledge and data where the obtained models can be compared and combined with models obtained through a KDD process in order to define a model more suitable to the dynamic process reality. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15164 Pomponio, Laura Matilde; Le Goc, Marc; Reducing the gap between experts' knowledge and data: the TOM4D methodology; Elsevier Science; Data & Knowledge Engineering; 94; Part A; 11-2014; 1-37 0169-023X |
url |
http://hdl.handle.net/11336/15164 |
identifier_str_mv |
Pomponio, Laura Matilde; Le Goc, Marc; Reducing the gap between experts' knowledge and data: the TOM4D methodology; Elsevier Science; Data & Knowledge Engineering; 94; Part A; 11-2014; 1-37 0169-023X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.datak.2014.07.006 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169023X14000652 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270074145079296 |
score |
13.13397 |