Computación de alto desempeño en GPU

Autores
Piccoli, María Fabiana
Año de publicación
2011
Idioma
español castellano
Tipo de recurso
libro
Estado
versión publicada
Descripción
Este libro es el resultado del trabajo de investigación sobre las características de la GPU y su adopción como arquitectura masivamente paralela para aplicaciones de propósito general. Su propósito es transformarse en una herramienta útil para guiar los primeros pasos de aquellos que se inician en la computación de alto desempeños en GPU. Pretende resumir el estado del arte considerando la bibliografía propuesta. El objetivo no es solamente describir la arquitectura many-core de la GPU y la herramienta de programación CUDA, sino también conducir al lector hacia el desarrollo de programas con buen desempeño. El libro se estructura de la siguiente manera: Capítulo 1: se detallan los conceptos básicos y generales de la computación de alto rendimiento, presentes en el resto del texto. Capítulo 2: describe las características de la arquitectura de la GPU y su evolución histórica. En ambos casos realizando una comparación con la CPU. Finalmente detalla la evolución de la GPU como co-procesador para el desarrollo de aplicaciones de propósito general. Capítulo 3: este capítulo contiene los lineamientos básicos del modelo de programación asociado a CUDA. CUDA provee una interfaz para la comunicación CPU-GPU y la administración de los threads. También se describe las características del modelo de ejecución SIMT asociado. Capítulo 4: analiza las propiedades generales y básicas de la jerarquía de memoria de la GPU, describiendo las propiedades de cada una, la forma de uso y sus ventajas y desventajas. Capítulo 5: comprende un análisis de los diferentes aspectos a tener en cuenta para resolver aplicaciones con buena performance. La programación de GPU con CUDA no es una mera transcripción de un código secuencial a un código paralelo, es necesario tener en cuenta diferentes aspectos para usar de manera eficiente la arquitectura y llevar a cabo una buena programación. Finalmente se incluyen tres apéndices. En el primero se describen los calificadores, tipos y funciones básicos de CUDA, el segundo detalla algunas herramientas simples de la biblioteca cutil.h para el control de la programación en CUDA. El último apéndice describe las capacidades de cómputo de CUDA para las distintas GPU existentes, listando los modelos reales que las poseen.
XV Escuela Internacional de Informática, realizada durante el XVII Congreso Argentino de Ciencia de la Computación (CACIC 2011).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
programación; GPU; CUDA; computación de alto rendimiento
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/18404

id SEDICI_85aa564545f9481675f75ceb11022ea6
oai_identifier_str oai:sedici.unlp.edu.ar:10915/18404
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Computación de alto desempeño en GPUPiccoli, María FabianaCiencias Informáticasprogramación; GPU; CUDA; computación de alto rendimientoEste libro es el resultado del trabajo de investigación sobre las características de la GPU y su adopción como arquitectura masivamente paralela para aplicaciones de propósito general. Su propósito es transformarse en una herramienta útil para guiar los primeros pasos de aquellos que se inician en la computación de alto desempeños en GPU. Pretende resumir el estado del arte considerando la bibliografía propuesta. El objetivo no es solamente describir la arquitectura many-core de la GPU y la herramienta de programación CUDA, sino también conducir al lector hacia el desarrollo de programas con buen desempeño. El libro se estructura de la siguiente manera: Capítulo 1: se detallan los conceptos básicos y generales de la computación de alto rendimiento, presentes en el resto del texto. Capítulo 2: describe las características de la arquitectura de la GPU y su evolución histórica. En ambos casos realizando una comparación con la CPU. Finalmente detalla la evolución de la GPU como co-procesador para el desarrollo de aplicaciones de propósito general. Capítulo 3: este capítulo contiene los lineamientos básicos del modelo de programación asociado a CUDA. CUDA provee una interfaz para la comunicación CPU-GPU y la administración de los threads. También se describe las características del modelo de ejecución SIMT asociado. Capítulo 4: analiza las propiedades generales y básicas de la jerarquía de memoria de la GPU, describiendo las propiedades de cada una, la forma de uso y sus ventajas y desventajas. Capítulo 5: comprende un análisis de los diferentes aspectos a tener en cuenta para resolver aplicaciones con buena performance. La programación de GPU con CUDA no es una mera transcripción de un código secuencial a un código paralelo, es necesario tener en cuenta diferentes aspectos para usar de manera eficiente la arquitectura y llevar a cabo una buena programación. Finalmente se incluyen tres apéndices. En el primero se describen los calificadores, tipos y funciones básicos de CUDA, el segundo detalla algunas herramientas simples de la biblioteca cutil.h para el control de la programación en CUDA. El último apéndice describe las capacidades de cómputo de CUDA para las distintas GPU existentes, listando los modelos reales que las poseen.XV Escuela Internacional de Informática, realizada durante el XVII Congreso Argentino de Ciencia de la Computación (CACIC 2011).Red de Universidades con Carreras en Informática (RedUNCI)Editorial de la Universidad Nacional de La Plata (EDULP)2011info:eu-repo/semantics/bookinfo:ar-repo/semantics/libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2f33application/pdfhttp://sedici.unlp.edu.ar/handle/10915/18404https://doi.org/10.35537/10915/18404spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-0759-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:26:20Zoai:sedici.unlp.edu.ar:10915/18404Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:26:20.927SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Computación de alto desempeño en GPU
title Computación de alto desempeño en GPU
spellingShingle Computación de alto desempeño en GPU
Piccoli, María Fabiana
Ciencias Informáticas
programación; GPU; CUDA; computación de alto rendimiento
title_short Computación de alto desempeño en GPU
title_full Computación de alto desempeño en GPU
title_fullStr Computación de alto desempeño en GPU
title_full_unstemmed Computación de alto desempeño en GPU
title_sort Computación de alto desempeño en GPU
dc.creator.none.fl_str_mv Piccoli, María Fabiana
author Piccoli, María Fabiana
author_facet Piccoli, María Fabiana
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
programación; GPU; CUDA; computación de alto rendimiento
topic Ciencias Informáticas
programación; GPU; CUDA; computación de alto rendimiento
dc.description.none.fl_txt_mv Este libro es el resultado del trabajo de investigación sobre las características de la GPU y su adopción como arquitectura masivamente paralela para aplicaciones de propósito general. Su propósito es transformarse en una herramienta útil para guiar los primeros pasos de aquellos que se inician en la computación de alto desempeños en GPU. Pretende resumir el estado del arte considerando la bibliografía propuesta. El objetivo no es solamente describir la arquitectura many-core de la GPU y la herramienta de programación CUDA, sino también conducir al lector hacia el desarrollo de programas con buen desempeño. El libro se estructura de la siguiente manera: Capítulo 1: se detallan los conceptos básicos y generales de la computación de alto rendimiento, presentes en el resto del texto. Capítulo 2: describe las características de la arquitectura de la GPU y su evolución histórica. En ambos casos realizando una comparación con la CPU. Finalmente detalla la evolución de la GPU como co-procesador para el desarrollo de aplicaciones de propósito general. Capítulo 3: este capítulo contiene los lineamientos básicos del modelo de programación asociado a CUDA. CUDA provee una interfaz para la comunicación CPU-GPU y la administración de los threads. También se describe las características del modelo de ejecución SIMT asociado. Capítulo 4: analiza las propiedades generales y básicas de la jerarquía de memoria de la GPU, describiendo las propiedades de cada una, la forma de uso y sus ventajas y desventajas. Capítulo 5: comprende un análisis de los diferentes aspectos a tener en cuenta para resolver aplicaciones con buena performance. La programación de GPU con CUDA no es una mera transcripción de un código secuencial a un código paralelo, es necesario tener en cuenta diferentes aspectos para usar de manera eficiente la arquitectura y llevar a cabo una buena programación. Finalmente se incluyen tres apéndices. En el primero se describen los calificadores, tipos y funciones básicos de CUDA, el segundo detalla algunas herramientas simples de la biblioteca cutil.h para el control de la programación en CUDA. El último apéndice describe las capacidades de cómputo de CUDA para las distintas GPU existentes, listando los modelos reales que las poseen.
XV Escuela Internacional de Informática, realizada durante el XVII Congreso Argentino de Ciencia de la Computación (CACIC 2011).
Red de Universidades con Carreras en Informática (RedUNCI)
description Este libro es el resultado del trabajo de investigación sobre las características de la GPU y su adopción como arquitectura masivamente paralela para aplicaciones de propósito general. Su propósito es transformarse en una herramienta útil para guiar los primeros pasos de aquellos que se inician en la computación de alto desempeños en GPU. Pretende resumir el estado del arte considerando la bibliografía propuesta. El objetivo no es solamente describir la arquitectura many-core de la GPU y la herramienta de programación CUDA, sino también conducir al lector hacia el desarrollo de programas con buen desempeño. El libro se estructura de la siguiente manera: Capítulo 1: se detallan los conceptos básicos y generales de la computación de alto rendimiento, presentes en el resto del texto. Capítulo 2: describe las características de la arquitectura de la GPU y su evolución histórica. En ambos casos realizando una comparación con la CPU. Finalmente detalla la evolución de la GPU como co-procesador para el desarrollo de aplicaciones de propósito general. Capítulo 3: este capítulo contiene los lineamientos básicos del modelo de programación asociado a CUDA. CUDA provee una interfaz para la comunicación CPU-GPU y la administración de los threads. También se describe las características del modelo de ejecución SIMT asociado. Capítulo 4: analiza las propiedades generales y básicas de la jerarquía de memoria de la GPU, describiendo las propiedades de cada una, la forma de uso y sus ventajas y desventajas. Capítulo 5: comprende un análisis de los diferentes aspectos a tener en cuenta para resolver aplicaciones con buena performance. La programación de GPU con CUDA no es una mera transcripción de un código secuencial a un código paralelo, es necesario tener en cuenta diferentes aspectos para usar de manera eficiente la arquitectura y llevar a cabo una buena programación. Finalmente se incluyen tres apéndices. En el primero se describen los calificadores, tipos y funciones básicos de CUDA, el segundo detalla algunas herramientas simples de la biblioteca cutil.h para el control de la programación en CUDA. El último apéndice describe las capacidades de cómputo de CUDA para las distintas GPU existentes, listando los modelos reales que las poseen.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/book
info:ar-repo/semantics/libro
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_2f33
format book
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/18404
https://doi.org/10.35537/10915/18404
url http://sedici.unlp.edu.ar/handle/10915/18404
https://doi.org/10.35537/10915/18404
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-0759-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260096484114432
score 13.13397