We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls
- Autores
- Barros de Araújo, Carlos
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The acousticmonitoring (PAM) of biodiversity has gained traction in recent years, even though classifying species within a recording could be challenging in places where acoustic diversity is high. Among the classification algorithms recently developed, BirdNET is probably the most promising. BirdNET was built to recognize over six thousand bird species and was trained using data from Xeno-canto and the Macaulay Library. Despite its huge potential, BirdNET is known to struggle with noisier recordings (1), reducing its accuracy for PAM.
Fil: Barros de Araújo, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentina - Materia
- bioacustica
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257427
Ver los metadatos del registro completo
| id |
CONICETDig_5915be4a451f66fa357635bd73ac7f00 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257427 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcallsBarros de Araújo, Carlosbioacusticahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The acousticmonitoring (PAM) of biodiversity has gained traction in recent years, even though classifying species within a recording could be challenging in places where acoustic diversity is high. Among the classification algorithms recently developed, BirdNET is probably the most promising. BirdNET was built to recognize over six thousand bird species and was trained using data from Xeno-canto and the Macaulay Library. Despite its huge potential, BirdNET is known to struggle with noisier recordings (1), reducing its accuracy for PAM.Fil: Barros de Araújo, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; ArgentinaNational Academy of Sciences2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257427Barros de Araújo, Carlos; We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 51; 12-2024; 1-10027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pnas.org/doi/10.1073/pnas.2419635121info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2419635121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:11:20Zoai:ri.conicet.gov.ar:11336/257427instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:11:20.631CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls |
| title |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls |
| spellingShingle |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls Barros de Araújo, Carlos bioacustica |
| title_short |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls |
| title_full |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls |
| title_fullStr |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls |
| title_full_unstemmed |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls |
| title_sort |
We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls |
| dc.creator.none.fl_str_mv |
Barros de Araújo, Carlos |
| author |
Barros de Araújo, Carlos |
| author_facet |
Barros de Araújo, Carlos |
| author_role |
author |
| dc.subject.none.fl_str_mv |
bioacustica |
| topic |
bioacustica |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The acousticmonitoring (PAM) of biodiversity has gained traction in recent years, even though classifying species within a recording could be challenging in places where acoustic diversity is high. Among the classification algorithms recently developed, BirdNET is probably the most promising. BirdNET was built to recognize over six thousand bird species and was trained using data from Xeno-canto and the Macaulay Library. Despite its huge potential, BirdNET is known to struggle with noisier recordings (1), reducing its accuracy for PAM. Fil: Barros de Araújo, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentina |
| description |
The acousticmonitoring (PAM) of biodiversity has gained traction in recent years, even though classifying species within a recording could be challenging in places where acoustic diversity is high. Among the classification algorithms recently developed, BirdNET is probably the most promising. BirdNET was built to recognize over six thousand bird species and was trained using data from Xeno-canto and the Macaulay Library. Despite its huge potential, BirdNET is known to struggle with noisier recordings (1), reducing its accuracy for PAM. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257427 Barros de Araújo, Carlos; We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 51; 12-2024; 1-1 0027-8424 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/257427 |
| identifier_str_mv |
Barros de Araújo, Carlos; We must not fool ourselves: A reply to Sethi et al. on the use of BirdNET to classify neotropical birdcalls; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 51; 12-2024; 1-1 0027-8424 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pnas.org/doi/10.1073/pnas.2419635121 info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2419635121 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
National Academy of Sciences |
| publisher.none.fl_str_mv |
National Academy of Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782505269592064 |
| score |
12.982451 |