Improved complete ensemble EMD: A suitable tool for biomedical signal processing
- Autores
 - Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia
 - Año de publicación
 - 2014
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - The empirical mode decomposition (EMD) decomposes non-stationary signals that may stem from nonlinear systems, in a local and fully data-driven manner. Noise-assisted versions have been proposed to alleviate the so-called “mode mixing” phenomenon, which may appear when real signals are analyzed. Among them, the complete ensemble EMD with adaptive noise (CEEMDAN) recovered the completeness property of EMD. In this work we present improvements on this last technique, obtaining components with less noise and more physical meaning. Artificial signals are analyzed to illustrate the capabilities of the new method. Finally, several real biomedical signals are decomposed, obtaining components that represent physiological phenomenons.
Fil: Colominas, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina
Fil: Schlotthauer, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina
Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina - Materia
 - 
            
        Empirical Mode Decomposition (Emd)
Noise-Assisted Data Analysis
Electroglottography
Ventricular Fibrillation
Epileptic Seizure - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/36429
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_fc23211b7a1ef0b8b6a8d12dbd301c82 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/36429 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processingColominas, Marcelo AlejandroSchlotthauer, GastonTorres, Maria EugeniaEmpirical Mode Decomposition (Emd)Noise-Assisted Data AnalysisElectroglottographyVentricular FibrillationEpileptic Seizurehttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2The empirical mode decomposition (EMD) decomposes non-stationary signals that may stem from nonlinear systems, in a local and fully data-driven manner. Noise-assisted versions have been proposed to alleviate the so-called “mode mixing” phenomenon, which may appear when real signals are analyzed. Among them, the complete ensemble EMD with adaptive noise (CEEMDAN) recovered the completeness property of EMD. In this work we present improvements on this last technique, obtaining components with less noise and more physical meaning. Artificial signals are analyzed to illustrate the capabilities of the new method. Finally, several real biomedical signals are decomposed, obtaining components that represent physiological phenomenons.Fil: Colominas, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaFil: Schlotthauer, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaFil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaElsevier2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36429Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; Improved complete ensemble EMD: A suitable tool for biomedical signal processing; Elsevier; Biomedical Signal Processing and Control; 14; 11-2014; 19-291746-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2014.06.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809414000962info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:47:13Zoai:ri.conicet.gov.ar:11336/36429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:47:13.673CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing | 
      
| title | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing | 
      
| spellingShingle | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing Colominas, Marcelo Alejandro Empirical Mode Decomposition (Emd) Noise-Assisted Data Analysis Electroglottography Ventricular Fibrillation Epileptic Seizure  | 
      
| title_short | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing | 
      
| title_full | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing | 
      
| title_fullStr | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing | 
      
| title_full_unstemmed | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing | 
      
| title_sort | 
                                Improved complete ensemble EMD: A suitable tool for biomedical signal processing | 
      
| dc.creator.none.fl_str_mv | 
                                Colominas, Marcelo Alejandro Schlotthauer, Gaston Torres, Maria Eugenia  | 
      
| author | 
                                Colominas, Marcelo Alejandro | 
      
| author_facet | 
                                Colominas, Marcelo Alejandro Schlotthauer, Gaston Torres, Maria Eugenia  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Schlotthauer, Gaston Torres, Maria Eugenia  | 
      
| author2_role | 
                                author author  | 
      
| dc.subject.none.fl_str_mv | 
                                Empirical Mode Decomposition (Emd) Noise-Assisted Data Analysis Electroglottography Ventricular Fibrillation Epileptic Seizure  | 
      
| topic | 
                                Empirical Mode Decomposition (Emd) Noise-Assisted Data Analysis Electroglottography Ventricular Fibrillation Epileptic Seizure  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2  | 
      
| dc.description.none.fl_txt_mv | 
                                The empirical mode decomposition (EMD) decomposes non-stationary signals that may stem from nonlinear systems, in a local and fully data-driven manner. Noise-assisted versions have been proposed to alleviate the so-called “mode mixing” phenomenon, which may appear when real signals are analyzed. Among them, the complete ensemble EMD with adaptive noise (CEEMDAN) recovered the completeness property of EMD. In this work we present improvements on this last technique, obtaining components with less noise and more physical meaning. Artificial signals are analyzed to illustrate the capabilities of the new method. Finally, several real biomedical signals are decomposed, obtaining components that represent physiological phenomenons. Fil: Colominas, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina Fil: Schlotthauer, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina  | 
      
| description | 
                                The empirical mode decomposition (EMD) decomposes non-stationary signals that may stem from nonlinear systems, in a local and fully data-driven manner. Noise-assisted versions have been proposed to alleviate the so-called “mode mixing” phenomenon, which may appear when real signals are analyzed. Among them, the complete ensemble EMD with adaptive noise (CEEMDAN) recovered the completeness property of EMD. In this work we present improvements on this last technique, obtaining components with less noise and more physical meaning. Artificial signals are analyzed to illustrate the capabilities of the new method. Finally, several real biomedical signals are decomposed, obtaining components that represent physiological phenomenons. | 
      
| publishDate | 
                                2014 | 
      
| dc.date.none.fl_str_mv | 
                                2014-11 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/36429 Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; Improved complete ensemble EMD: A suitable tool for biomedical signal processing; Elsevier; Biomedical Signal Processing and Control; 14; 11-2014; 19-29 1746-8094 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/36429 | 
      
| identifier_str_mv | 
                                Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; Improved complete ensemble EMD: A suitable tool for biomedical signal processing; Elsevier; Biomedical Signal Processing and Control; 14; 11-2014; 19-29 1746-8094 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2014.06.009 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809414000962  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Elsevier | 
      
| publisher.none.fl_str_mv | 
                                Elsevier | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426470922682368 | 
      
| score | 
                                13.10058 |