Detection of the Glottal Closure Instants Using Empirical Mode Decomposition

Autores
Sharma, A. Surja; Prasanna, S. R. M.; Rufiner, Hugo Leonardo; Schlotthauer, Gaston
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work explores the effectiveness of the Intrinsic Mode Functions (IMFs) of the speech signal, in estimating its Glottal Closure Instants (GCIs). The IMFs of the speech signal, which are its AM–FM or oscillatory components, are obtained from two similar nonlinear and non-stationary signal analysis techniques—Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), and Modified Empirical Mode Decomposition (MEMD). Both these techniques are advanced variants of the original technique—Empirical Mode Decomposition (EMD). MEMD is much faster than ICEEMDAN, whereas the latter curtails mode-mixing (a drawback of EMD) more effectively. It is observed that the partial summation of a certain subset of the IMFs results in a signal whose minima are aligned with the GCIs. Based on this observation, two different methods are devised for estimating the GCIs from the IMFs of ICEEMDAN and MEMD. The two methods are captioned ICEEMDAN-based GCIs Estimation (IGE) and MEMD-based GCIs Estimation (MGE). The results reveal that IGE and MGE provide consistent and reliable estimates of the GCIs, compared to the state-of-the-art methods, across different scenarios—clean, noisy, and telephone channel conditions.
Fil: Sharma, A. Surja. Indian Institute of Technology; India
Fil: Prasanna, S. R. M.. Indian Institute of Technology; India
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; Argentina
Materia
Glottal Closure Instants
Empirical Mode Decomposition
Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
Modified Empirical Mode Decomposition
Intrinsic Mode Functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41422

id CONICETDig_a01017cf04e1369ea9c58eae8c48359b
oai_identifier_str oai:ri.conicet.gov.ar:11336/41422
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Detection of the Glottal Closure Instants Using Empirical Mode DecompositionSharma, A. SurjaPrasanna, S. R. M.Rufiner, Hugo LeonardoSchlotthauer, GastonGlottal Closure InstantsEmpirical Mode DecompositionImproved Complete Ensemble Empirical Mode Decomposition with Adaptive NoiseModified Empirical Mode DecompositionIntrinsic Mode Functionshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This work explores the effectiveness of the Intrinsic Mode Functions (IMFs) of the speech signal, in estimating its Glottal Closure Instants (GCIs). The IMFs of the speech signal, which are its AM–FM or oscillatory components, are obtained from two similar nonlinear and non-stationary signal analysis techniques—Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), and Modified Empirical Mode Decomposition (MEMD). Both these techniques are advanced variants of the original technique—Empirical Mode Decomposition (EMD). MEMD is much faster than ICEEMDAN, whereas the latter curtails mode-mixing (a drawback of EMD) more effectively. It is observed that the partial summation of a certain subset of the IMFs results in a signal whose minima are aligned with the GCIs. Based on this observation, two different methods are devised for estimating the GCIs from the IMFs of ICEEMDAN and MEMD. The two methods are captioned ICEEMDAN-based GCIs Estimation (IGE) and MEMD-based GCIs Estimation (MGE). The results reveal that IGE and MGE provide consistent and reliable estimates of the GCIs, compared to the state-of-the-art methods, across different scenarios—clean, noisy, and telephone channel conditions.Fil: Sharma, A. Surja. Indian Institute of Technology; IndiaFil: Prasanna, S. R. M.. Indian Institute of Technology; IndiaFil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; ArgentinaBirkhauser Boston Inc2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41422Sharma, A. Surja; Prasanna, S. R. M.; Rufiner, Hugo Leonardo; Schlotthauer, Gaston; Detection of the Glottal Closure Instants Using Empirical Mode Decomposition; Birkhauser Boston Inc; Circuits Systems And Signal Processing; 11-2017; 1-290278-081XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00034-017-0713-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00034-017-0713-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:41Zoai:ri.conicet.gov.ar:11336/41422instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:41.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
title Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
spellingShingle Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
Sharma, A. Surja
Glottal Closure Instants
Empirical Mode Decomposition
Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
Modified Empirical Mode Decomposition
Intrinsic Mode Functions
title_short Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
title_full Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
title_fullStr Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
title_full_unstemmed Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
title_sort Detection of the Glottal Closure Instants Using Empirical Mode Decomposition
dc.creator.none.fl_str_mv Sharma, A. Surja
Prasanna, S. R. M.
Rufiner, Hugo Leonardo
Schlotthauer, Gaston
author Sharma, A. Surja
author_facet Sharma, A. Surja
Prasanna, S. R. M.
Rufiner, Hugo Leonardo
Schlotthauer, Gaston
author_role author
author2 Prasanna, S. R. M.
Rufiner, Hugo Leonardo
Schlotthauer, Gaston
author2_role author
author
author
dc.subject.none.fl_str_mv Glottal Closure Instants
Empirical Mode Decomposition
Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
Modified Empirical Mode Decomposition
Intrinsic Mode Functions
topic Glottal Closure Instants
Empirical Mode Decomposition
Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
Modified Empirical Mode Decomposition
Intrinsic Mode Functions
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work explores the effectiveness of the Intrinsic Mode Functions (IMFs) of the speech signal, in estimating its Glottal Closure Instants (GCIs). The IMFs of the speech signal, which are its AM–FM or oscillatory components, are obtained from two similar nonlinear and non-stationary signal analysis techniques—Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), and Modified Empirical Mode Decomposition (MEMD). Both these techniques are advanced variants of the original technique—Empirical Mode Decomposition (EMD). MEMD is much faster than ICEEMDAN, whereas the latter curtails mode-mixing (a drawback of EMD) more effectively. It is observed that the partial summation of a certain subset of the IMFs results in a signal whose minima are aligned with the GCIs. Based on this observation, two different methods are devised for estimating the GCIs from the IMFs of ICEEMDAN and MEMD. The two methods are captioned ICEEMDAN-based GCIs Estimation (IGE) and MEMD-based GCIs Estimation (MGE). The results reveal that IGE and MGE provide consistent and reliable estimates of the GCIs, compared to the state-of-the-art methods, across different scenarios—clean, noisy, and telephone channel conditions.
Fil: Sharma, A. Surja. Indian Institute of Technology; India
Fil: Prasanna, S. R. M.. Indian Institute of Technology; India
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; Argentina
description This work explores the effectiveness of the Intrinsic Mode Functions (IMFs) of the speech signal, in estimating its Glottal Closure Instants (GCIs). The IMFs of the speech signal, which are its AM–FM or oscillatory components, are obtained from two similar nonlinear and non-stationary signal analysis techniques—Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), and Modified Empirical Mode Decomposition (MEMD). Both these techniques are advanced variants of the original technique—Empirical Mode Decomposition (EMD). MEMD is much faster than ICEEMDAN, whereas the latter curtails mode-mixing (a drawback of EMD) more effectively. It is observed that the partial summation of a certain subset of the IMFs results in a signal whose minima are aligned with the GCIs. Based on this observation, two different methods are devised for estimating the GCIs from the IMFs of ICEEMDAN and MEMD. The two methods are captioned ICEEMDAN-based GCIs Estimation (IGE) and MEMD-based GCIs Estimation (MGE). The results reveal that IGE and MGE provide consistent and reliable estimates of the GCIs, compared to the state-of-the-art methods, across different scenarios—clean, noisy, and telephone channel conditions.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41422
Sharma, A. Surja; Prasanna, S. R. M.; Rufiner, Hugo Leonardo; Schlotthauer, Gaston; Detection of the Glottal Closure Instants Using Empirical Mode Decomposition; Birkhauser Boston Inc; Circuits Systems And Signal Processing; 11-2017; 1-29
0278-081X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41422
identifier_str_mv Sharma, A. Surja; Prasanna, S. R. M.; Rufiner, Hugo Leonardo; Schlotthauer, Gaston; Detection of the Glottal Closure Instants Using Empirical Mode Decomposition; Birkhauser Boston Inc; Circuits Systems And Signal Processing; 11-2017; 1-29
0278-081X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00034-017-0713-4
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00034-017-0713-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Boston Inc
publisher.none.fl_str_mv Birkhauser Boston Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269175871963136
score 13.13397