n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells

Autores
Rubinelli, Francisco Alberto; Rath, J.K.; Schropp, R.E.I.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The kinetics controlling the electrical transport inside the μc-Si tunnel-recombination junction (TRJ) of a-Si:H/a-Si:H tandem solar cells was studied in detail with computer simulations. Trap assisted recombination tunneling and Poole–Frenkel mechanisms were included in our analysis. Three different μc-Si tunnel junctions were investigated: (a) n-p, (b) n-oxide-p and (c) n-i-p. The highest theoretical efficiencies in a-Si:H/a-Si:H tandem cells were achieved with the n-i-p tunnel junction structure. The impact of the μc-Si effective masses, mobility gap, and mobilities in the tandem solar cell efficiency is also studied in this article. Several a-Si:H/a-Si:H tandem solar cells were made with the μc-Si tunnel configurations of types (b) and (c). In all of these samples one extra oxide layer was needed at the i-a-Si:H/n-μc-Si interface. Both tunnel junctions lead us to comparable experimental tandem solar cell efficiencies. When the n-i-p structure is implemented as TRJ in the a-Si:H/a-Si:H tandem solar cell, efficiencies sensitively depend upon the tunnel junction intrinsic layer thickness. The optimization of this thickness provides a more controlled way of maximizing the tandem solar cell efficiency. Illuminated J–V and QE characteristics were successfully fitted using computer modeling.
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Rath, J.K.. Utrecht University; Países Bajos
Fil: Schropp, R.E.I.. Utrecht University; Países Bajos
Materia
Tandem Solar Cells
Recombination Junctions
Amorphous silicon
Modelling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/27787

id CONICETDig_570e046d886cf26a5784977b50dcd5c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/27787
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem CellsRubinelli, Francisco AlbertoRath, J.K.Schropp, R.E.I.Tandem Solar CellsRecombination JunctionsAmorphous siliconModellinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The kinetics controlling the electrical transport inside the μc-Si tunnel-recombination junction (TRJ) of a-Si:H/a-Si:H tandem solar cells was studied in detail with computer simulations. Trap assisted recombination tunneling and Poole–Frenkel mechanisms were included in our analysis. Three different μc-Si tunnel junctions were investigated: (a) n-p, (b) n-oxide-p and (c) n-i-p. The highest theoretical efficiencies in a-Si:H/a-Si:H tandem cells were achieved with the n-i-p tunnel junction structure. The impact of the μc-Si effective masses, mobility gap, and mobilities in the tandem solar cell efficiency is also studied in this article. Several a-Si:H/a-Si:H tandem solar cells were made with the μc-Si tunnel configurations of types (b) and (c). In all of these samples one extra oxide layer was needed at the i-a-Si:H/n-μc-Si interface. Both tunnel junctions lead us to comparable experimental tandem solar cell efficiencies. When the n-i-p structure is implemented as TRJ in the a-Si:H/a-Si:H tandem solar cell, efficiencies sensitively depend upon the tunnel junction intrinsic layer thickness. The optimization of this thickness provides a more controlled way of maximizing the tandem solar cell efficiency. Illuminated J–V and QE characteristics were successfully fitted using computer modeling.Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Rath, J.K.. Utrecht University; Países BajosFil: Schropp, R.E.I.. Utrecht University; Países BajosAmerican Institute of Physics2001-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27787Rubinelli, Francisco Alberto; Rath, J.K.; Schropp, R.E.I.; n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells; American Institute of Physics; Journal of Applied Physics; 89; 7; 4-2001; 4010-40200021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.1352032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:41:33Zoai:ri.conicet.gov.ar:11336/27787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:41:33.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
title n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
spellingShingle n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
Rubinelli, Francisco Alberto
Tandem Solar Cells
Recombination Junctions
Amorphous silicon
Modelling
title_short n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
title_full n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
title_fullStr n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
title_full_unstemmed n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
title_sort n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells
dc.creator.none.fl_str_mv Rubinelli, Francisco Alberto
Rath, J.K.
Schropp, R.E.I.
author Rubinelli, Francisco Alberto
author_facet Rubinelli, Francisco Alberto
Rath, J.K.
Schropp, R.E.I.
author_role author
author2 Rath, J.K.
Schropp, R.E.I.
author2_role author
author
dc.subject.none.fl_str_mv Tandem Solar Cells
Recombination Junctions
Amorphous silicon
Modelling
topic Tandem Solar Cells
Recombination Junctions
Amorphous silicon
Modelling
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The kinetics controlling the electrical transport inside the μc-Si tunnel-recombination junction (TRJ) of a-Si:H/a-Si:H tandem solar cells was studied in detail with computer simulations. Trap assisted recombination tunneling and Poole–Frenkel mechanisms were included in our analysis. Three different μc-Si tunnel junctions were investigated: (a) n-p, (b) n-oxide-p and (c) n-i-p. The highest theoretical efficiencies in a-Si:H/a-Si:H tandem cells were achieved with the n-i-p tunnel junction structure. The impact of the μc-Si effective masses, mobility gap, and mobilities in the tandem solar cell efficiency is also studied in this article. Several a-Si:H/a-Si:H tandem solar cells were made with the μc-Si tunnel configurations of types (b) and (c). In all of these samples one extra oxide layer was needed at the i-a-Si:H/n-μc-Si interface. Both tunnel junctions lead us to comparable experimental tandem solar cell efficiencies. When the n-i-p structure is implemented as TRJ in the a-Si:H/a-Si:H tandem solar cell, efficiencies sensitively depend upon the tunnel junction intrinsic layer thickness. The optimization of this thickness provides a more controlled way of maximizing the tandem solar cell efficiency. Illuminated J–V and QE characteristics were successfully fitted using computer modeling.
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Rath, J.K.. Utrecht University; Países Bajos
Fil: Schropp, R.E.I.. Utrecht University; Países Bajos
description The kinetics controlling the electrical transport inside the μc-Si tunnel-recombination junction (TRJ) of a-Si:H/a-Si:H tandem solar cells was studied in detail with computer simulations. Trap assisted recombination tunneling and Poole–Frenkel mechanisms were included in our analysis. Three different μc-Si tunnel junctions were investigated: (a) n-p, (b) n-oxide-p and (c) n-i-p. The highest theoretical efficiencies in a-Si:H/a-Si:H tandem cells were achieved with the n-i-p tunnel junction structure. The impact of the μc-Si effective masses, mobility gap, and mobilities in the tandem solar cell efficiency is also studied in this article. Several a-Si:H/a-Si:H tandem solar cells were made with the μc-Si tunnel configurations of types (b) and (c). In all of these samples one extra oxide layer was needed at the i-a-Si:H/n-μc-Si interface. Both tunnel junctions lead us to comparable experimental tandem solar cell efficiencies. When the n-i-p structure is implemented as TRJ in the a-Si:H/a-Si:H tandem solar cell, efficiencies sensitively depend upon the tunnel junction intrinsic layer thickness. The optimization of this thickness provides a more controlled way of maximizing the tandem solar cell efficiency. Illuminated J–V and QE characteristics were successfully fitted using computer modeling.
publishDate 2001
dc.date.none.fl_str_mv 2001-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/27787
Rubinelli, Francisco Alberto; Rath, J.K.; Schropp, R.E.I.; n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells; American Institute of Physics; Journal of Applied Physics; 89; 7; 4-2001; 4010-4020
0021-8979
CONICET Digital
CONICET
url http://hdl.handle.net/11336/27787
identifier_str_mv Rubinelli, Francisco Alberto; Rath, J.K.; Schropp, R.E.I.; n-i-p Microcrystalline Tunnel Junction in a-Si:H/a-Si:H Tandem Cells; American Institute of Physics; Journal of Applied Physics; 89; 7; 4-2001; 4010-4020
0021-8979
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.1352032
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597583575908352
score 12.976206