Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles

Autores
Valencia, Felipe J.; González, Rafael I.; Vega, H.; Ruestes, Carlos Javier; Rogan, José; Valdivia, Juan Alejandro; Bringa, Eduardo Marcial; Kiwi, Miguel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Palladium nanoparticles are technologically important for catalysis, hydrogen storage, and many other applications. Here, we investigate the mechanical properties of Pd hollow nanoparticles of different sizes and thicknesses by means of classical molecular dynamics simulations. Hollow nanospheres of sizes ranging from 5 to 40 nm are compressed using planar indenters. Our results suggest that the mechanical response of hollow nanoparticles can be tailored by tuning the external radius (R) and shell thickness (ω). The largest elastic limit for a given thickness is achieved when the aspect ratio A = R/ω is 3 ≤ A ≤ 4. This delay of the onset of plastic deformation is due to the fact that, for this geometry, hollow nanoparticles can buckle, avoiding stress concentration in the contact; this in turn favors stress accumulation and dislocation emission at the inner surface, in sharp contrast to the behavior of solid nanoparticles and "bulk" surfaces.
Fil: Valencia, Felipe J.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
Fil: González, Rafael I.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile
Fil: Vega, H.. Universidad de Chile; Chile
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Rogan, José. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
Fil: Valdivia, Juan Alejandro. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Kiwi, Miguel. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
Materia
nanoparticles
mechanical properties
palladium
molecular dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100404

id CONICETDig_59d5cfabf6fd06bfbf9a777f068933c5
oai_identifier_str oai:ri.conicet.gov.ar:11336/100404
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mechanical Properties Obtained by Indentation of Hollow Pd NanoparticlesValencia, Felipe J.González, Rafael I.Vega, H.Ruestes, Carlos JavierRogan, JoséValdivia, Juan AlejandroBringa, Eduardo MarcialKiwi, Miguelnanoparticlesmechanical propertiespalladiummolecular dynamicshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Palladium nanoparticles are technologically important for catalysis, hydrogen storage, and many other applications. Here, we investigate the mechanical properties of Pd hollow nanoparticles of different sizes and thicknesses by means of classical molecular dynamics simulations. Hollow nanospheres of sizes ranging from 5 to 40 nm are compressed using planar indenters. Our results suggest that the mechanical response of hollow nanoparticles can be tailored by tuning the external radius (R) and shell thickness (ω). The largest elastic limit for a given thickness is achieved when the aspect ratio A = R/ω is 3 ≤ A ≤ 4. This delay of the onset of plastic deformation is due to the fact that, for this geometry, hollow nanoparticles can buckle, avoiding stress concentration in the contact; this in turn favors stress accumulation and dislocation emission at the inner surface, in sharp contrast to the behavior of solid nanoparticles and "bulk" surfaces.Fil: Valencia, Felipe J.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; ChileFil: González, Rafael I.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; ChileFil: Vega, H.. Universidad de Chile; ChileFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rogan, José. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; ChileFil: Valdivia, Juan Alejandro. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; ChileFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Kiwi, Miguel. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; ChileAmerican Chemical Society2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100404Valencia, Felipe J.; González, Rafael I.; Vega, H.; Ruestes, Carlos Javier; Rogan, José; et al.; Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles; American Chemical Society; Journal of Physical Chemistry C; 122; 43; 11-2018; 25035-250421932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.8b07242info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.8b07242info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:09Zoai:ri.conicet.gov.ar:11336/100404instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:10.213CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
title Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
spellingShingle Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
Valencia, Felipe J.
nanoparticles
mechanical properties
palladium
molecular dynamics
title_short Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
title_full Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
title_fullStr Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
title_full_unstemmed Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
title_sort Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles
dc.creator.none.fl_str_mv Valencia, Felipe J.
González, Rafael I.
Vega, H.
Ruestes, Carlos Javier
Rogan, José
Valdivia, Juan Alejandro
Bringa, Eduardo Marcial
Kiwi, Miguel
author Valencia, Felipe J.
author_facet Valencia, Felipe J.
González, Rafael I.
Vega, H.
Ruestes, Carlos Javier
Rogan, José
Valdivia, Juan Alejandro
Bringa, Eduardo Marcial
Kiwi, Miguel
author_role author
author2 González, Rafael I.
Vega, H.
Ruestes, Carlos Javier
Rogan, José
Valdivia, Juan Alejandro
Bringa, Eduardo Marcial
Kiwi, Miguel
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv nanoparticles
mechanical properties
palladium
molecular dynamics
topic nanoparticles
mechanical properties
palladium
molecular dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Palladium nanoparticles are technologically important for catalysis, hydrogen storage, and many other applications. Here, we investigate the mechanical properties of Pd hollow nanoparticles of different sizes and thicknesses by means of classical molecular dynamics simulations. Hollow nanospheres of sizes ranging from 5 to 40 nm are compressed using planar indenters. Our results suggest that the mechanical response of hollow nanoparticles can be tailored by tuning the external radius (R) and shell thickness (ω). The largest elastic limit for a given thickness is achieved when the aspect ratio A = R/ω is 3 ≤ A ≤ 4. This delay of the onset of plastic deformation is due to the fact that, for this geometry, hollow nanoparticles can buckle, avoiding stress concentration in the contact; this in turn favors stress accumulation and dislocation emission at the inner surface, in sharp contrast to the behavior of solid nanoparticles and "bulk" surfaces.
Fil: Valencia, Felipe J.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
Fil: González, Rafael I.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile
Fil: Vega, H.. Universidad de Chile; Chile
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Rogan, José. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
Fil: Valdivia, Juan Alejandro. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Kiwi, Miguel. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile. Universidad de Chile; Chile
description Palladium nanoparticles are technologically important for catalysis, hydrogen storage, and many other applications. Here, we investigate the mechanical properties of Pd hollow nanoparticles of different sizes and thicknesses by means of classical molecular dynamics simulations. Hollow nanospheres of sizes ranging from 5 to 40 nm are compressed using planar indenters. Our results suggest that the mechanical response of hollow nanoparticles can be tailored by tuning the external radius (R) and shell thickness (ω). The largest elastic limit for a given thickness is achieved when the aspect ratio A = R/ω is 3 ≤ A ≤ 4. This delay of the onset of plastic deformation is due to the fact that, for this geometry, hollow nanoparticles can buckle, avoiding stress concentration in the contact; this in turn favors stress accumulation and dislocation emission at the inner surface, in sharp contrast to the behavior of solid nanoparticles and "bulk" surfaces.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100404
Valencia, Felipe J.; González, Rafael I.; Vega, H.; Ruestes, Carlos Javier; Rogan, José; et al.; Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles; American Chemical Society; Journal of Physical Chemistry C; 122; 43; 11-2018; 25035-25042
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100404
identifier_str_mv Valencia, Felipe J.; González, Rafael I.; Vega, H.; Ruestes, Carlos Javier; Rogan, José; et al.; Mechanical Properties Obtained by Indentation of Hollow Pd Nanoparticles; American Chemical Society; Journal of Physical Chemistry C; 122; 43; 11-2018; 25035-25042
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.8b07242
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.8b07242
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613238225895424
score 13.070432