On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems
- Autores
- Morris, Ian D.; Shmerkin, Pablo Sebastian
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Under mild conditions we show that the affinity dimension of a planar self-affine set is equal to the supremum of the Lyapunov dimensions of self-affine measures supported on self-affine proper subsets of the original set. These self-affine subsets may be chosen so as to have stronger separation properties and in such a way that the linear parts of their affinities are positive matrices. Combining this result with some recent breakthroughs in the study of self-affine measures and their associated Furstenberg measures, we obtain new criteria under which the Hausdorff dimension of a self-affine set equals its affinity dimension. For example, applying recent results of Bárány, Hochman–Solomyak, and Rapaport, we provide many new explicit examples of self-affine sets whose Hausdorff dimension equals its affinity dimension, and for which the linear parts do not satisfy any positivity or domination assumptions.
Fil: Morris, Ian D.. University of Surrey; Reino Unido
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
Self-affine sets
Affinity dimension
Hausdorff dimension - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/177835
Ver los metadatos del registro completo
| id |
CONICETDig_3decc5f90f24f91547f871f0d604d5a0 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/177835 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystemsMorris, Ian D.Shmerkin, Pablo SebastianSelf-affine setsAffinity dimensionHausdorff dimensionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Under mild conditions we show that the affinity dimension of a planar self-affine set is equal to the supremum of the Lyapunov dimensions of self-affine measures supported on self-affine proper subsets of the original set. These self-affine subsets may be chosen so as to have stronger separation properties and in such a way that the linear parts of their affinities are positive matrices. Combining this result with some recent breakthroughs in the study of self-affine measures and their associated Furstenberg measures, we obtain new criteria under which the Hausdorff dimension of a self-affine set equals its affinity dimension. For example, applying recent results of Bárány, Hochman–Solomyak, and Rapaport, we provide many new explicit examples of self-affine sets whose Hausdorff dimension equals its affinity dimension, and for which the linear parts do not satisfy any positivity or domination assumptions.Fil: Morris, Ian D.. University of Surrey; Reino UnidoFil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaAmerican Mathematical Society2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/177835Morris, Ian D.; Shmerkin, Pablo Sebastian; On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems; American Mathematical Society; Transactions of the American Mathematical Society; 371; 3; 10-2018; 1547-15820002-99471088-6850CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2019-371-03/S0002-9947-2018-07334-2/home.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1090/tran/7334info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1602.08789info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:10:06Zoai:ri.conicet.gov.ar:11336/177835instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:10:06.57CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems |
| title |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems |
| spellingShingle |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems Morris, Ian D. Self-affine sets Affinity dimension Hausdorff dimension |
| title_short |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems |
| title_full |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems |
| title_fullStr |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems |
| title_full_unstemmed |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems |
| title_sort |
On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems |
| dc.creator.none.fl_str_mv |
Morris, Ian D. Shmerkin, Pablo Sebastian |
| author |
Morris, Ian D. |
| author_facet |
Morris, Ian D. Shmerkin, Pablo Sebastian |
| author_role |
author |
| author2 |
Shmerkin, Pablo Sebastian |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Self-affine sets Affinity dimension Hausdorff dimension |
| topic |
Self-affine sets Affinity dimension Hausdorff dimension |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Under mild conditions we show that the affinity dimension of a planar self-affine set is equal to the supremum of the Lyapunov dimensions of self-affine measures supported on self-affine proper subsets of the original set. These self-affine subsets may be chosen so as to have stronger separation properties and in such a way that the linear parts of their affinities are positive matrices. Combining this result with some recent breakthroughs in the study of self-affine measures and their associated Furstenberg measures, we obtain new criteria under which the Hausdorff dimension of a self-affine set equals its affinity dimension. For example, applying recent results of Bárány, Hochman–Solomyak, and Rapaport, we provide many new explicit examples of self-affine sets whose Hausdorff dimension equals its affinity dimension, and for which the linear parts do not satisfy any positivity or domination assumptions. Fil: Morris, Ian D.. University of Surrey; Reino Unido Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
| description |
Under mild conditions we show that the affinity dimension of a planar self-affine set is equal to the supremum of the Lyapunov dimensions of self-affine measures supported on self-affine proper subsets of the original set. These self-affine subsets may be chosen so as to have stronger separation properties and in such a way that the linear parts of their affinities are positive matrices. Combining this result with some recent breakthroughs in the study of self-affine measures and their associated Furstenberg measures, we obtain new criteria under which the Hausdorff dimension of a self-affine set equals its affinity dimension. For example, applying recent results of Bárány, Hochman–Solomyak, and Rapaport, we provide many new explicit examples of self-affine sets whose Hausdorff dimension equals its affinity dimension, and for which the linear parts do not satisfy any positivity or domination assumptions. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/177835 Morris, Ian D.; Shmerkin, Pablo Sebastian; On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems; American Mathematical Society; Transactions of the American Mathematical Society; 371; 3; 10-2018; 1547-1582 0002-9947 1088-6850 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/177835 |
| identifier_str_mv |
Morris, Ian D.; Shmerkin, Pablo Sebastian; On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems; American Mathematical Society; Transactions of the American Mathematical Society; 371; 3; 10-2018; 1547-1582 0002-9947 1088-6850 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2019-371-03/S0002-9947-2018-07334-2/home.html info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/7334 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1602.08789 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977621780955136 |
| score |
13.087074 |