Random evolution in population dynamics
- Autores
- Caceres Garcia Faure, Manuel Osvaldo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
EFFECTIVE LYAPUNOV EXPONENT
LESLIE MATRICES
PERRON-FROBENIUS
POPULATION DYNAMICS
RANDOM LINEAR MAPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125000
Ver los metadatos del registro completo
| id |
CONICETDig_54af9d28b7d43cc21a57b2c400256025 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125000 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Random evolution in population dynamicsCaceres Garcia Faure, Manuel OsvaldoEFFECTIVE LYAPUNOV EXPONENTLESLIE MATRICESPERRON-FROBENIUSPOPULATION DYNAMICSRANDOM LINEAR MAPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder.Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaWorld Scientific2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125000Caceres Garcia Faure, Manuel Osvaldo; Random evolution in population dynamics; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 1-2010; 297-3070218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218127410025740info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025740info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:49:25Zoai:ri.conicet.gov.ar:11336/125000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:49:26.043CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Random evolution in population dynamics |
| title |
Random evolution in population dynamics |
| spellingShingle |
Random evolution in population dynamics Caceres Garcia Faure, Manuel Osvaldo EFFECTIVE LYAPUNOV EXPONENT LESLIE MATRICES PERRON-FROBENIUS POPULATION DYNAMICS RANDOM LINEAR MAPS |
| title_short |
Random evolution in population dynamics |
| title_full |
Random evolution in population dynamics |
| title_fullStr |
Random evolution in population dynamics |
| title_full_unstemmed |
Random evolution in population dynamics |
| title_sort |
Random evolution in population dynamics |
| dc.creator.none.fl_str_mv |
Caceres Garcia Faure, Manuel Osvaldo |
| author |
Caceres Garcia Faure, Manuel Osvaldo |
| author_facet |
Caceres Garcia Faure, Manuel Osvaldo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
EFFECTIVE LYAPUNOV EXPONENT LESLIE MATRICES PERRON-FROBENIUS POPULATION DYNAMICS RANDOM LINEAR MAPS |
| topic |
EFFECTIVE LYAPUNOV EXPONENT LESLIE MATRICES PERRON-FROBENIUS POPULATION DYNAMICS RANDOM LINEAR MAPS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder. Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
| description |
We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125000 Caceres Garcia Faure, Manuel Osvaldo; Random evolution in population dynamics; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 1-2010; 297-307 0218-1274 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/125000 |
| identifier_str_mv |
Caceres Garcia Faure, Manuel Osvaldo; Random evolution in population dynamics; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 1-2010; 297-307 0218-1274 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218127410025740 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025740 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
World Scientific |
| publisher.none.fl_str_mv |
World Scientific |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598071067279360 |
| score |
13.24909 |