Random evolution in population dynamics

Autores
Caceres Garcia Faure, Manuel Osvaldo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
EFFECTIVE LYAPUNOV EXPONENT
LESLIE MATRICES
PERRON-FROBENIUS
POPULATION DYNAMICS
RANDOM LINEAR MAPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125000

id CONICETDig_54af9d28b7d43cc21a57b2c400256025
oai_identifier_str oai:ri.conicet.gov.ar:11336/125000
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Random evolution in population dynamicsCaceres Garcia Faure, Manuel OsvaldoEFFECTIVE LYAPUNOV EXPONENTLESLIE MATRICESPERRON-FROBENIUSPOPULATION DYNAMICSRANDOM LINEAR MAPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder.Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaWorld Scientific2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125000Caceres Garcia Faure, Manuel Osvaldo; Random evolution in population dynamics; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 1-2010; 297-3070218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218127410025740info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025740info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:49:25Zoai:ri.conicet.gov.ar:11336/125000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:49:26.043CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Random evolution in population dynamics
title Random evolution in population dynamics
spellingShingle Random evolution in population dynamics
Caceres Garcia Faure, Manuel Osvaldo
EFFECTIVE LYAPUNOV EXPONENT
LESLIE MATRICES
PERRON-FROBENIUS
POPULATION DYNAMICS
RANDOM LINEAR MAPS
title_short Random evolution in population dynamics
title_full Random evolution in population dynamics
title_fullStr Random evolution in population dynamics
title_full_unstemmed Random evolution in population dynamics
title_sort Random evolution in population dynamics
dc.creator.none.fl_str_mv Caceres Garcia Faure, Manuel Osvaldo
author Caceres Garcia Faure, Manuel Osvaldo
author_facet Caceres Garcia Faure, Manuel Osvaldo
author_role author
dc.subject.none.fl_str_mv EFFECTIVE LYAPUNOV EXPONENT
LESLIE MATRICES
PERRON-FROBENIUS
POPULATION DYNAMICS
RANDOM LINEAR MAPS
topic EFFECTIVE LYAPUNOV EXPONENT
LESLIE MATRICES
PERRON-FROBENIUS
POPULATION DYNAMICS
RANDOM LINEAR MAPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description We present a perturbative formalism to deal with linear random positive maps. We generalize the biological concept of the population growth rate when a Leslie matrix has random elements (i.e. characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean-value population vector state, is presented as the effective growth rate of a random Leslie model. The problem was reduced to the calculation of the smallest positive root z̃1 of the secular polynomial appearing in the general expression for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by order in terms of a diagrammatic technique built with Terwiel's cumulants, which have carefully been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1 depends on the model of disorder, one can link the asymptotic population dynamics with the statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the meaning of an effective PerronFrobenious eigenvalue for a random positive matrix. Analytical (exact and perturbative calculations) results are presented for several models of disorder.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125000
Caceres Garcia Faure, Manuel Osvaldo; Random evolution in population dynamics; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 1-2010; 297-307
0218-1274
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125000
identifier_str_mv Caceres Garcia Faure, Manuel Osvaldo; Random evolution in population dynamics; World Scientific; International Journal Of Bifurcation And Chaos; 20; 2; 1-2010; 297-307
0218-1274
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218127410025740
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127410025740
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598071067279360
score 13.24909