A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian co...
- Autores
- Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; Serrano, Laura Soledad; Taylor, Joshua Paul; Reis, Mitermayer G.; Ko, Albert I.; Begon, Mike; Diggle, Peter J.; Costa, Federico; Giorgi, Emanuele
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.
Fil: Eyre, Max T.. Universidad de Lancaster. Facultad de Salud y Medicina. ; Reino Unido. University of Liverpool; Reino Unido
Fil: Carvalho Pereira, Ticiana S. A.. Universidade Federal da Bahia; Brasil
Fil: Souza, Fábio N.. Universidade Federal da Bahia; Brasil
Fil: Khalil, Hussein. Universidade Federal da Bahia; Brasil. Universidad de Ciencias Agrícolas de Suecia; Suecia
Fil: Hacker, Kathryn P.. University of Pennsylvania; Estados Unidos
Fil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Reis, Mitermayer G.. Fundación Oswaldo Cruz; Brasil. Universidade Federal da Bahia; Brasil
Fil: Ko, Albert I.. University of Yale; Estados Unidos. Fundación Oswaldo Cruz; Brasil
Fil: Begon, Mike. University of Liverpool; Reino Unido
Fil: Diggle, Peter J.. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido
Fil: Costa, Federico. University of Yale; Estados Unidos. Universidade Federal da Bahia; Brasil. Fundación Oswaldo Cruz; Brasil
Fil: Giorgi, Emanuele. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido - Materia
-
ABUNDANCE INDICES
EPIDEMIOLOGY
LEPTOSPIROSIS
MULTIVARIATE MODEL-BASED GEOSTATISTICS
NORWAY RAT
ZOONOTIC AND VECTOR-BORNE DISEASES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157048
Ver los metadatos del registro completo
id |
CONICETDig_549e8d0bada037044f1f3e0457463efc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157048 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian communityEyre, Max T.Carvalho Pereira, Ticiana S. A.Souza, Fábio N.Khalil, HusseinHacker, Kathryn P.Serrano, Laura SoledadTaylor, Joshua PaulReis, Mitermayer G.Ko, Albert I.Begon, MikeDiggle, Peter J.Costa, FedericoGiorgi, EmanueleABUNDANCE INDICESEPIDEMIOLOGYLEPTOSPIROSISMULTIVARIATE MODEL-BASED GEOSTATISTICSNORWAY RATZOONOTIC AND VECTOR-BORNE DISEASEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.Fil: Eyre, Max T.. Universidad de Lancaster. Facultad de Salud y Medicina. ; Reino Unido. University of Liverpool; Reino UnidoFil: Carvalho Pereira, Ticiana S. A.. Universidade Federal da Bahia; BrasilFil: Souza, Fábio N.. Universidade Federal da Bahia; BrasilFil: Khalil, Hussein. Universidade Federal da Bahia; Brasil. Universidad de Ciencias Agrícolas de Suecia; SueciaFil: Hacker, Kathryn P.. University of Pennsylvania; Estados UnidosFil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Reis, Mitermayer G.. Fundación Oswaldo Cruz; Brasil. Universidade Federal da Bahia; BrasilFil: Ko, Albert I.. University of Yale; Estados Unidos. Fundación Oswaldo Cruz; BrasilFil: Begon, Mike. University of Liverpool; Reino UnidoFil: Diggle, Peter J.. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino UnidoFil: Costa, Federico. University of Yale; Estados Unidos. Universidade Federal da Bahia; Brasil. Fundación Oswaldo Cruz; BrasilFil: Giorgi, Emanuele. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino UnidoThe Royal Society2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157048Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; et al.; A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community; The Royal Society; Journal of the Royal Society Interface; 17; 170; 9-2020; 1-211742-56891742-5662CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1098/rsif.2020.0398info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0398info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:49Zoai:ri.conicet.gov.ar:11336/157048instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:49.843CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community |
title |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community |
spellingShingle |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community Eyre, Max T. ABUNDANCE INDICES EPIDEMIOLOGY LEPTOSPIROSIS MULTIVARIATE MODEL-BASED GEOSTATISTICS NORWAY RAT ZOONOTIC AND VECTOR-BORNE DISEASES |
title_short |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community |
title_full |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community |
title_fullStr |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community |
title_full_unstemmed |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community |
title_sort |
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community |
dc.creator.none.fl_str_mv |
Eyre, Max T. Carvalho Pereira, Ticiana S. A. Souza, Fábio N. Khalil, Hussein Hacker, Kathryn P. Serrano, Laura Soledad Taylor, Joshua Paul Reis, Mitermayer G. Ko, Albert I. Begon, Mike Diggle, Peter J. Costa, Federico Giorgi, Emanuele |
author |
Eyre, Max T. |
author_facet |
Eyre, Max T. Carvalho Pereira, Ticiana S. A. Souza, Fábio N. Khalil, Hussein Hacker, Kathryn P. Serrano, Laura Soledad Taylor, Joshua Paul Reis, Mitermayer G. Ko, Albert I. Begon, Mike Diggle, Peter J. Costa, Federico Giorgi, Emanuele |
author_role |
author |
author2 |
Carvalho Pereira, Ticiana S. A. Souza, Fábio N. Khalil, Hussein Hacker, Kathryn P. Serrano, Laura Soledad Taylor, Joshua Paul Reis, Mitermayer G. Ko, Albert I. Begon, Mike Diggle, Peter J. Costa, Federico Giorgi, Emanuele |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ABUNDANCE INDICES EPIDEMIOLOGY LEPTOSPIROSIS MULTIVARIATE MODEL-BASED GEOSTATISTICS NORWAY RAT ZOONOTIC AND VECTOR-BORNE DISEASES |
topic |
ABUNDANCE INDICES EPIDEMIOLOGY LEPTOSPIROSIS MULTIVARIATE MODEL-BASED GEOSTATISTICS NORWAY RAT ZOONOTIC AND VECTOR-BORNE DISEASES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease. Fil: Eyre, Max T.. Universidad de Lancaster. Facultad de Salud y Medicina. ; Reino Unido. University of Liverpool; Reino Unido Fil: Carvalho Pereira, Ticiana S. A.. Universidade Federal da Bahia; Brasil Fil: Souza, Fábio N.. Universidade Federal da Bahia; Brasil Fil: Khalil, Hussein. Universidade Federal da Bahia; Brasil. Universidad de Ciencias Agrícolas de Suecia; Suecia Fil: Hacker, Kathryn P.. University of Pennsylvania; Estados Unidos Fil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Reis, Mitermayer G.. Fundación Oswaldo Cruz; Brasil. Universidade Federal da Bahia; Brasil Fil: Ko, Albert I.. University of Yale; Estados Unidos. Fundación Oswaldo Cruz; Brasil Fil: Begon, Mike. University of Liverpool; Reino Unido Fil: Diggle, Peter J.. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido Fil: Costa, Federico. University of Yale; Estados Unidos. Universidade Federal da Bahia; Brasil. Fundación Oswaldo Cruz; Brasil Fil: Giorgi, Emanuele. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido |
description |
A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157048 Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; et al.; A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community; The Royal Society; Journal of the Royal Society Interface; 17; 170; 9-2020; 1-21 1742-5689 1742-5662 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157048 |
identifier_str_mv |
Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; et al.; A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community; The Royal Society; Journal of the Royal Society Interface; 17; 170; 9-2020; 1-21 1742-5689 1742-5662 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1098/rsif.2020.0398 info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0398 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Royal Society |
publisher.none.fl_str_mv |
The Royal Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614389219459072 |
score |
13.070432 |