A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian co...

Autores
Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; Serrano, Laura Soledad; Taylor, Joshua Paul; Reis, Mitermayer G.; Ko, Albert I.; Begon, Mike; Diggle, Peter J.; Costa, Federico; Giorgi, Emanuele
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.
Fil: Eyre, Max T.. Universidad de Lancaster. Facultad de Salud y Medicina. ; Reino Unido. University of Liverpool; Reino Unido
Fil: Carvalho Pereira, Ticiana S. A.. Universidade Federal da Bahia; Brasil
Fil: Souza, Fábio N.. Universidade Federal da Bahia; Brasil
Fil: Khalil, Hussein. Universidade Federal da Bahia; Brasil. Universidad de Ciencias Agrícolas de Suecia; Suecia
Fil: Hacker, Kathryn P.. University of Pennsylvania; Estados Unidos
Fil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Reis, Mitermayer G.. Fundación Oswaldo Cruz; Brasil. Universidade Federal da Bahia; Brasil
Fil: Ko, Albert I.. University of Yale; Estados Unidos. Fundación Oswaldo Cruz; Brasil
Fil: Begon, Mike. University of Liverpool; Reino Unido
Fil: Diggle, Peter J.. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido
Fil: Costa, Federico. University of Yale; Estados Unidos. Universidade Federal da Bahia; Brasil. Fundación Oswaldo Cruz; Brasil
Fil: Giorgi, Emanuele. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido
Materia
ABUNDANCE INDICES
EPIDEMIOLOGY
LEPTOSPIROSIS
MULTIVARIATE MODEL-BASED GEOSTATISTICS
NORWAY RAT
ZOONOTIC AND VECTOR-BORNE DISEASES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/157048

id CONICETDig_549e8d0bada037044f1f3e0457463efc
oai_identifier_str oai:ri.conicet.gov.ar:11336/157048
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian communityEyre, Max T.Carvalho Pereira, Ticiana S. A.Souza, Fábio N.Khalil, HusseinHacker, Kathryn P.Serrano, Laura SoledadTaylor, Joshua PaulReis, Mitermayer G.Ko, Albert I.Begon, MikeDiggle, Peter J.Costa, FedericoGiorgi, EmanueleABUNDANCE INDICESEPIDEMIOLOGYLEPTOSPIROSISMULTIVARIATE MODEL-BASED GEOSTATISTICSNORWAY RATZOONOTIC AND VECTOR-BORNE DISEASEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.Fil: Eyre, Max T.. Universidad de Lancaster. Facultad de Salud y Medicina. ; Reino Unido. University of Liverpool; Reino UnidoFil: Carvalho Pereira, Ticiana S. A.. Universidade Federal da Bahia; BrasilFil: Souza, Fábio N.. Universidade Federal da Bahia; BrasilFil: Khalil, Hussein. Universidade Federal da Bahia; Brasil. Universidad de Ciencias Agrícolas de Suecia; SueciaFil: Hacker, Kathryn P.. University of Pennsylvania; Estados UnidosFil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Reis, Mitermayer G.. Fundación Oswaldo Cruz; Brasil. Universidade Federal da Bahia; BrasilFil: Ko, Albert I.. University of Yale; Estados Unidos. Fundación Oswaldo Cruz; BrasilFil: Begon, Mike. University of Liverpool; Reino UnidoFil: Diggle, Peter J.. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino UnidoFil: Costa, Federico. University of Yale; Estados Unidos. Universidade Federal da Bahia; Brasil. Fundación Oswaldo Cruz; BrasilFil: Giorgi, Emanuele. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino UnidoThe Royal Society2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157048Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; et al.; A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community; The Royal Society; Journal of the Royal Society Interface; 17; 170; 9-2020; 1-211742-56891742-5662CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1098/rsif.2020.0398info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0398info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:49Zoai:ri.conicet.gov.ar:11336/157048instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:49.843CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
title A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
spellingShingle A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
Eyre, Max T.
ABUNDANCE INDICES
EPIDEMIOLOGY
LEPTOSPIROSIS
MULTIVARIATE MODEL-BASED GEOSTATISTICS
NORWAY RAT
ZOONOTIC AND VECTOR-BORNE DISEASES
title_short A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
title_full A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
title_fullStr A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
title_full_unstemmed A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
title_sort A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community
dc.creator.none.fl_str_mv Eyre, Max T.
Carvalho Pereira, Ticiana S. A.
Souza, Fábio N.
Khalil, Hussein
Hacker, Kathryn P.
Serrano, Laura Soledad
Taylor, Joshua Paul
Reis, Mitermayer G.
Ko, Albert I.
Begon, Mike
Diggle, Peter J.
Costa, Federico
Giorgi, Emanuele
author Eyre, Max T.
author_facet Eyre, Max T.
Carvalho Pereira, Ticiana S. A.
Souza, Fábio N.
Khalil, Hussein
Hacker, Kathryn P.
Serrano, Laura Soledad
Taylor, Joshua Paul
Reis, Mitermayer G.
Ko, Albert I.
Begon, Mike
Diggle, Peter J.
Costa, Federico
Giorgi, Emanuele
author_role author
author2 Carvalho Pereira, Ticiana S. A.
Souza, Fábio N.
Khalil, Hussein
Hacker, Kathryn P.
Serrano, Laura Soledad
Taylor, Joshua Paul
Reis, Mitermayer G.
Ko, Albert I.
Begon, Mike
Diggle, Peter J.
Costa, Federico
Giorgi, Emanuele
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ABUNDANCE INDICES
EPIDEMIOLOGY
LEPTOSPIROSIS
MULTIVARIATE MODEL-BASED GEOSTATISTICS
NORWAY RAT
ZOONOTIC AND VECTOR-BORNE DISEASES
topic ABUNDANCE INDICES
EPIDEMIOLOGY
LEPTOSPIROSIS
MULTIVARIATE MODEL-BASED GEOSTATISTICS
NORWAY RAT
ZOONOTIC AND VECTOR-BORNE DISEASES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.
Fil: Eyre, Max T.. Universidad de Lancaster. Facultad de Salud y Medicina. ; Reino Unido. University of Liverpool; Reino Unido
Fil: Carvalho Pereira, Ticiana S. A.. Universidade Federal da Bahia; Brasil
Fil: Souza, Fábio N.. Universidade Federal da Bahia; Brasil
Fil: Khalil, Hussein. Universidade Federal da Bahia; Brasil. Universidad de Ciencias Agrícolas de Suecia; Suecia
Fil: Hacker, Kathryn P.. University of Pennsylvania; Estados Unidos
Fil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Reis, Mitermayer G.. Fundación Oswaldo Cruz; Brasil. Universidade Federal da Bahia; Brasil
Fil: Ko, Albert I.. University of Yale; Estados Unidos. Fundación Oswaldo Cruz; Brasil
Fil: Begon, Mike. University of Liverpool; Reino Unido
Fil: Diggle, Peter J.. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido
Fil: Costa, Federico. University of Yale; Estados Unidos. Universidade Federal da Bahia; Brasil. Fundación Oswaldo Cruz; Brasil
Fil: Giorgi, Emanuele. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido
description A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.
publishDate 2020
dc.date.none.fl_str_mv 2020-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/157048
Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; et al.; A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community; The Royal Society; Journal of the Royal Society Interface; 17; 170; 9-2020; 1-21
1742-5689
1742-5662
CONICET Digital
CONICET
url http://hdl.handle.net/11336/157048
identifier_str_mv Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; et al.; A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community; The Royal Society; Journal of the Royal Society Interface; 17; 170; 9-2020; 1-21
1742-5689
1742-5662
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1098/rsif.2020.0398
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0398
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv The Royal Society
publisher.none.fl_str_mv The Royal Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614389219459072
score 13.070432