A multivariate geostatistical approach for landscape classification from remotely sensed image data
- Autores
- Vallejos, Ronny; Mallea, Adriana; Herrera, Myriam; Ojeda, Silvia María
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Vallejos, Ronny. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.
Fil: Mallea, Adriana. Universidad Nacional de San Juan. Departamento de Matemática; Argentina.
Fil: Herrera, Myriam. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
This paper proposes a methodology to address the classification of images that have been acquired from remote sensors. One common problem in classification is the high dimensionality of multivariate characteristics. The methodology we propose consists of reducing the dimensionality of the spectral bands associated with a multispectral satellite image. Such dimensionality reduction is accomplished by the use of the divergence of a modified Mahalanobis distance. Instead of using the covariance matrix of a multivariate spatial process, the codispersion matrix is considered which have some desirable asymptotic properties under very precise conditions. The consistency and asymptotic normality hold for a general class of processes that are a natural extension of the one-dimensional spatial processes for which the asymptotic properties were first established. The results allow the selection of a set of spectral bands to produce the highest value of divergence. Then, a supervised maximum likelihood method using the selected spectral bands is employed for landscape classification. An application with a real LANDSAT image is introduced to explore and visualize how our method works in practice.
publishedVersion
Fil: Vallejos, Ronny. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.
Fil: Mallea, Adriana. Universidad Nacional de San Juan. Departamento de Matemática; Argentina.
Fil: Herrera, Myriam. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Estadística y Probabilidad - Fuente
- ISSN: 1436-3240
- Materia
-
Multivariate spatial process
Spatial association
Codispersion matrix
Dimensionality reduction
Image classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/27180
Ver los metadatos del registro completo
id |
RDUUNC_a884b606102f794428e65bff7bed23e7 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/27180 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
A multivariate geostatistical approach for landscape classification from remotely sensed image dataVallejos, RonnyMallea, AdrianaHerrera, MyriamOjeda, Silvia MaríaMultivariate spatial processSpatial associationCodispersion matrixDimensionality reductionImage classificationFil: Vallejos, Ronny. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.Fil: Mallea, Adriana. Universidad Nacional de San Juan. Departamento de Matemática; Argentina.Fil: Herrera, Myriam. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.This paper proposes a methodology to address the classification of images that have been acquired from remote sensors. One common problem in classification is the high dimensionality of multivariate characteristics. The methodology we propose consists of reducing the dimensionality of the spectral bands associated with a multispectral satellite image. Such dimensionality reduction is accomplished by the use of the divergence of a modified Mahalanobis distance. Instead of using the covariance matrix of a multivariate spatial process, the codispersion matrix is considered which have some desirable asymptotic properties under very precise conditions. The consistency and asymptotic normality hold for a general class of processes that are a natural extension of the one-dimensional spatial processes for which the asymptotic properties were first established. The results allow the selection of a set of spectral bands to produce the highest value of divergence. Then, a supervised maximum likelihood method using the selected spectral bands is employed for landscape classification. An application with a real LANDSAT image is introduced to explore and visualize how our method works in practice.publishedVersionFil: Vallejos, Ronny. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.Fil: Mallea, Adriana. Universidad Nacional de San Juan. Departamento de Matemática; Argentina.Fil: Herrera, Myriam. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Estadística y Probabilidad2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/11086/27180https://doi.org/10.1007/s00477-014-0884-5https://doi.org/10.1007/s00477-014-0884-5ISSN: 1436-3240reponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCenginfo:eu-repo/semantics/openAccess2025-09-29T13:42:56Zoai:rdu.unc.edu.ar:11086/27180Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:42:56.514Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
A multivariate geostatistical approach for landscape classification from remotely sensed image data |
title |
A multivariate geostatistical approach for landscape classification from remotely sensed image data |
spellingShingle |
A multivariate geostatistical approach for landscape classification from remotely sensed image data Vallejos, Ronny Multivariate spatial process Spatial association Codispersion matrix Dimensionality reduction Image classification |
title_short |
A multivariate geostatistical approach for landscape classification from remotely sensed image data |
title_full |
A multivariate geostatistical approach for landscape classification from remotely sensed image data |
title_fullStr |
A multivariate geostatistical approach for landscape classification from remotely sensed image data |
title_full_unstemmed |
A multivariate geostatistical approach for landscape classification from remotely sensed image data |
title_sort |
A multivariate geostatistical approach for landscape classification from remotely sensed image data |
dc.creator.none.fl_str_mv |
Vallejos, Ronny Mallea, Adriana Herrera, Myriam Ojeda, Silvia María |
author |
Vallejos, Ronny |
author_facet |
Vallejos, Ronny Mallea, Adriana Herrera, Myriam Ojeda, Silvia María |
author_role |
author |
author2 |
Mallea, Adriana Herrera, Myriam Ojeda, Silvia María |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Multivariate spatial process Spatial association Codispersion matrix Dimensionality reduction Image classification |
topic |
Multivariate spatial process Spatial association Codispersion matrix Dimensionality reduction Image classification |
dc.description.none.fl_txt_mv |
Fil: Vallejos, Ronny. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile. Fil: Mallea, Adriana. Universidad Nacional de San Juan. Departamento de Matemática; Argentina. Fil: Herrera, Myriam. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. This paper proposes a methodology to address the classification of images that have been acquired from remote sensors. One common problem in classification is the high dimensionality of multivariate characteristics. The methodology we propose consists of reducing the dimensionality of the spectral bands associated with a multispectral satellite image. Such dimensionality reduction is accomplished by the use of the divergence of a modified Mahalanobis distance. Instead of using the covariance matrix of a multivariate spatial process, the codispersion matrix is considered which have some desirable asymptotic properties under very precise conditions. The consistency and asymptotic normality hold for a general class of processes that are a natural extension of the one-dimensional spatial processes for which the asymptotic properties were first established. The results allow the selection of a set of spectral bands to produce the highest value of divergence. Then, a supervised maximum likelihood method using the selected spectral bands is employed for landscape classification. An application with a real LANDSAT image is introduced to explore and visualize how our method works in practice. publishedVersion Fil: Vallejos, Ronny. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile. Fil: Mallea, Adriana. Universidad Nacional de San Juan. Departamento de Matemática; Argentina. Fil: Herrera, Myriam. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Estadística y Probabilidad |
description |
Fil: Vallejos, Ronny. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/27180 https://doi.org/10.1007/s00477-014-0884-5 https://doi.org/10.1007/s00477-014-0884-5 |
url |
http://hdl.handle.net/11086/27180 https://doi.org/10.1007/s00477-014-0884-5 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
ISSN: 1436-3240 reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618940719824896 |
score |
13.070432 |