A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian co...

Autores
Eyre, Max T.; Soares de Andrade de Carvalho Pereira, Ticiana; Souza, Fabio N.; Khalil, Hussein; Hacker, Kathryn P.; Serrano, Laura Soledad; Taylor, Joshua Paul; Reis, Mitermayer G.; Ko, Albert I.; Begon, Mike; Diggle, Peter J.; Costa, Federico; Giorgi, Emanuele
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk-factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices, assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.
Estación Experimental Agropecuaria Bariloche
Fil: Eyre, Max T. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino Unido
Fil: Soares de Andrade de Carvalho Pereira, Ticiana. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Souza, Fabio N. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Khalil, Hussein. Swedish University of Agricultural Sciences; Suecia
Fil: Hacker, Kathryn P. University of Pennsylvania; Estados Unidos
Fil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Reis, Mitermayer G. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Ko, Albert I. Brazilian Ministry of Health. Oswaldo Cruz Foundation; Brasil
Fil: Begon, Mike. University of Liverpool. Department of Evolution, Ecology and Behaviour; Reino Unido
Fil: Diggle, Peter J. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino Unido
Fil: Costa, Federico. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Giorgi, Emanuele. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino Unido
Fuente
Journal of the Royal Society Interface 17 (170) : 1-21 (septiembre 2020)
Materia
Zoonosis
Enfermedades Infecciosas
Leptospirosis
Zoonoses
Infectious Diseases
Brazil
Brasil
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/7965

id INTADig_fd4a3cb68dd24b8719aee9265c91c5d9
oai_identifier_str oai:localhost:20.500.12123/7965
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian communityEyre, Max T.Soares de Andrade de Carvalho Pereira, TicianaSouza, Fabio N.Khalil, HusseinHacker, Kathryn P.Serrano, Laura SoledadTaylor, Joshua PaulReis, Mitermayer G.Ko, Albert I.Begon, MikeDiggle, Peter J.Costa, FedericoGiorgi, EmanueleZoonosisEnfermedades InfecciosasLeptospirosisZoonosesInfectious DiseasesBrazilBrasilA key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk-factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices, assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.Estación Experimental Agropecuaria BarilocheFil: Eyre, Max T. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino UnidoFil: Soares de Andrade de Carvalho Pereira, Ticiana. Universidade Federal da Bahia. Instituto de Saúde Coletiva; BrasilFil: Souza, Fabio N. Universidade Federal da Bahia. Instituto de Saúde Coletiva; BrasilFil: Khalil, Hussein. Swedish University of Agricultural Sciences; SueciaFil: Hacker, Kathryn P. University of Pennsylvania; Estados UnidosFil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Reis, Mitermayer G. Universidade Federal da Bahia. Instituto de Saúde Coletiva; BrasilFil: Ko, Albert I. Brazilian Ministry of Health. Oswaldo Cruz Foundation; BrasilFil: Begon, Mike. University of Liverpool. Department of Evolution, Ecology and Behaviour; Reino UnidoFil: Diggle, Peter J. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino UnidoFil: Costa, Federico. Universidade Federal da Bahia. Instituto de Saúde Coletiva; BrasilFil: Giorgi, Emanuele. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino UnidoThe Royal Society Publishing2020-09-25T11:48:09Z2020-09-25T11:48:09Z2020-09-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/7965https://royalsocietypublishing.org/doi/10.1098/rsif.2020.03981742-56891742-5662https://doi.org/10.1098/rsif.2020.0398Journal of the Royal Society Interface 17 (170) : 1-21 (septiembre 2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:45:02Zoai:localhost:20.500.12123/7965instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:02.424INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
title A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
spellingShingle A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
Eyre, Max T.
Zoonosis
Enfermedades Infecciosas
Leptospirosis
Zoonoses
Infectious Diseases
Brazil
Brasil
title_short A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
title_full A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
title_fullStr A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
title_full_unstemmed A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
title_sort A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: a case study of rattiness in a low-income urban Brazilian community
dc.creator.none.fl_str_mv Eyre, Max T.
Soares de Andrade de Carvalho Pereira, Ticiana
Souza, Fabio N.
Khalil, Hussein
Hacker, Kathryn P.
Serrano, Laura Soledad
Taylor, Joshua Paul
Reis, Mitermayer G.
Ko, Albert I.
Begon, Mike
Diggle, Peter J.
Costa, Federico
Giorgi, Emanuele
author Eyre, Max T.
author_facet Eyre, Max T.
Soares de Andrade de Carvalho Pereira, Ticiana
Souza, Fabio N.
Khalil, Hussein
Hacker, Kathryn P.
Serrano, Laura Soledad
Taylor, Joshua Paul
Reis, Mitermayer G.
Ko, Albert I.
Begon, Mike
Diggle, Peter J.
Costa, Federico
Giorgi, Emanuele
author_role author
author2 Soares de Andrade de Carvalho Pereira, Ticiana
Souza, Fabio N.
Khalil, Hussein
Hacker, Kathryn P.
Serrano, Laura Soledad
Taylor, Joshua Paul
Reis, Mitermayer G.
Ko, Albert I.
Begon, Mike
Diggle, Peter J.
Costa, Federico
Giorgi, Emanuele
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Zoonosis
Enfermedades Infecciosas
Leptospirosis
Zoonoses
Infectious Diseases
Brazil
Brasil
topic Zoonosis
Enfermedades Infecciosas
Leptospirosis
Zoonoses
Infectious Diseases
Brazil
Brasil
dc.description.none.fl_txt_mv A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk-factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices, assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.
Estación Experimental Agropecuaria Bariloche
Fil: Eyre, Max T. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino Unido
Fil: Soares de Andrade de Carvalho Pereira, Ticiana. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Souza, Fabio N. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Khalil, Hussein. Swedish University of Agricultural Sciences; Suecia
Fil: Hacker, Kathryn P. University of Pennsylvania; Estados Unidos
Fil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Reis, Mitermayer G. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Ko, Albert I. Brazilian Ministry of Health. Oswaldo Cruz Foundation; Brasil
Fil: Begon, Mike. University of Liverpool. Department of Evolution, Ecology and Behaviour; Reino Unido
Fil: Diggle, Peter J. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino Unido
Fil: Costa, Federico. Universidade Federal da Bahia. Instituto de Saúde Coletiva; Brasil
Fil: Giorgi, Emanuele. Lancaster University Medical School. Centre for Health Informatics, Computing, and Statistics; Reino Unido
description A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk-factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices, assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-25T11:48:09Z
2020-09-25T11:48:09Z
2020-09-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/7965
https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0398
1742-5689
1742-5662
https://doi.org/10.1098/rsif.2020.0398
url http://hdl.handle.net/20.500.12123/7965
https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0398
https://doi.org/10.1098/rsif.2020.0398
identifier_str_mv 1742-5689
1742-5662
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv The Royal Society Publishing
publisher.none.fl_str_mv The Royal Society Publishing
dc.source.none.fl_str_mv Journal of the Royal Society Interface 17 (170) : 1-21 (septiembre 2020)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619147497963520
score 12.559606