SCDVP: A Simplicial CNN Digital Visual Processor
- Autores
- Di Federico, Martin; Julian, Pedro Marcelo; Mandolesi, Pablo Sergio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we present a programmable and reconfigurable single instruction multiple data (SIMD) visual processor based on the S-CNN architecture, namely, the Simplicial CNN Digital Visual Processor (SCDVP), oriented to high-performance low-level image processing. The cells in the array have a selectable neighborhood configuration and several registers, which provide the chip with extended spatial and temporal processing capabilities, in particular optical flow. A prototype 64 × 64 cell chip with two program memories and a column adder was fabricated in a 90 nm technology, which running at 133 MHz delivers 105.5 GOPS. The calculation at the cell level is performed with time coded signals and the program memory is located outside the array. This produces a very efficient realization in terms of area: 53.8 GOPS per mm2, which outperforms all results reported so far. We show that even after normalization, to account for technology scaling, the proposed architecture is the most efficient among all reported digital processors. Computation performance to power ratio also exceeds all previous results with 817.8 GOPS/W. Experimental results of the working chip are reported.
Fil: Di Federico, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Mandolesi, Pablo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina - Materia
-
Cellular Neural Networks
Simplicial Computation
Image Processing
Pixel Level Processing
Vision Chip
Asic
Piecewise Linear - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11760
Ver los metadatos del registro completo
id |
CONICETDig_53f46ee9ae0bd4fa2c70a58e1094e1e7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11760 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
SCDVP: A Simplicial CNN Digital Visual ProcessorDi Federico, MartinJulian, Pedro MarceloMandolesi, Pablo SergioCellular Neural NetworksSimplicial ComputationImage ProcessingPixel Level ProcessingVision ChipAsicPiecewise Linearhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work we present a programmable and reconfigurable single instruction multiple data (SIMD) visual processor based on the S-CNN architecture, namely, the Simplicial CNN Digital Visual Processor (SCDVP), oriented to high-performance low-level image processing. The cells in the array have a selectable neighborhood configuration and several registers, which provide the chip with extended spatial and temporal processing capabilities, in particular optical flow. A prototype 64 × 64 cell chip with two program memories and a column adder was fabricated in a 90 nm technology, which running at 133 MHz delivers 105.5 GOPS. The calculation at the cell level is performed with time coded signals and the program memory is located outside the array. This produces a very efficient realization in terms of area: 53.8 GOPS per mm2, which outperforms all results reported so far. We show that even after normalization, to account for technology scaling, the proposed architecture is the most efficient among all reported digital processors. Computation performance to power ratio also exceeds all previous results with 817.8 GOPS/W. Experimental results of the working chip are reported.Fil: Di Federico, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Mandolesi, Pablo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaInstitute Of Electrical And Electronics Engineers2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11760Di Federico, Martin; Julian, Pedro Marcelo; Mandolesi, Pablo Sergio; SCDVP: A Simplicial CNN Digital Visual Processor; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Circuits And Systems I-regular Papers; 61; 7; 7-2014; 1962-19691549-83281558-0806enginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6716069/info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1109/TCSI.2013.2295959info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:54Zoai:ri.conicet.gov.ar:11336/11760instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:54.703CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
SCDVP: A Simplicial CNN Digital Visual Processor |
title |
SCDVP: A Simplicial CNN Digital Visual Processor |
spellingShingle |
SCDVP: A Simplicial CNN Digital Visual Processor Di Federico, Martin Cellular Neural Networks Simplicial Computation Image Processing Pixel Level Processing Vision Chip Asic Piecewise Linear |
title_short |
SCDVP: A Simplicial CNN Digital Visual Processor |
title_full |
SCDVP: A Simplicial CNN Digital Visual Processor |
title_fullStr |
SCDVP: A Simplicial CNN Digital Visual Processor |
title_full_unstemmed |
SCDVP: A Simplicial CNN Digital Visual Processor |
title_sort |
SCDVP: A Simplicial CNN Digital Visual Processor |
dc.creator.none.fl_str_mv |
Di Federico, Martin Julian, Pedro Marcelo Mandolesi, Pablo Sergio |
author |
Di Federico, Martin |
author_facet |
Di Federico, Martin Julian, Pedro Marcelo Mandolesi, Pablo Sergio |
author_role |
author |
author2 |
Julian, Pedro Marcelo Mandolesi, Pablo Sergio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Cellular Neural Networks Simplicial Computation Image Processing Pixel Level Processing Vision Chip Asic Piecewise Linear |
topic |
Cellular Neural Networks Simplicial Computation Image Processing Pixel Level Processing Vision Chip Asic Piecewise Linear |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we present a programmable and reconfigurable single instruction multiple data (SIMD) visual processor based on the S-CNN architecture, namely, the Simplicial CNN Digital Visual Processor (SCDVP), oriented to high-performance low-level image processing. The cells in the array have a selectable neighborhood configuration and several registers, which provide the chip with extended spatial and temporal processing capabilities, in particular optical flow. A prototype 64 × 64 cell chip with two program memories and a column adder was fabricated in a 90 nm technology, which running at 133 MHz delivers 105.5 GOPS. The calculation at the cell level is performed with time coded signals and the program memory is located outside the array. This produces a very efficient realization in terms of area: 53.8 GOPS per mm2, which outperforms all results reported so far. We show that even after normalization, to account for technology scaling, the proposed architecture is the most efficient among all reported digital processors. Computation performance to power ratio also exceeds all previous results with 817.8 GOPS/W. Experimental results of the working chip are reported. Fil: Di Federico, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina Fil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina Fil: Mandolesi, Pablo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina |
description |
In this work we present a programmable and reconfigurable single instruction multiple data (SIMD) visual processor based on the S-CNN architecture, namely, the Simplicial CNN Digital Visual Processor (SCDVP), oriented to high-performance low-level image processing. The cells in the array have a selectable neighborhood configuration and several registers, which provide the chip with extended spatial and temporal processing capabilities, in particular optical flow. A prototype 64 × 64 cell chip with two program memories and a column adder was fabricated in a 90 nm technology, which running at 133 MHz delivers 105.5 GOPS. The calculation at the cell level is performed with time coded signals and the program memory is located outside the array. This produces a very efficient realization in terms of area: 53.8 GOPS per mm2, which outperforms all results reported so far. We show that even after normalization, to account for technology scaling, the proposed architecture is the most efficient among all reported digital processors. Computation performance to power ratio also exceeds all previous results with 817.8 GOPS/W. Experimental results of the working chip are reported. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11760 Di Federico, Martin; Julian, Pedro Marcelo; Mandolesi, Pablo Sergio; SCDVP: A Simplicial CNN Digital Visual Processor; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Circuits And Systems I-regular Papers; 61; 7; 7-2014; 1962-1969 1549-8328 1558-0806 |
url |
http://hdl.handle.net/11336/11760 |
identifier_str_mv |
Di Federico, Martin; Julian, Pedro Marcelo; Mandolesi, Pablo Sergio; SCDVP: A Simplicial CNN Digital Visual Processor; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Circuits And Systems I-regular Papers; 61; 7; 7-2014; 1962-1969 1549-8328 1558-0806 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6716069/ info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1109/TCSI.2013.2295959 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute Of Electrical And Electronics Engineers |
publisher.none.fl_str_mv |
Institute Of Electrical And Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269061353832448 |
score |
12.885934 |