Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme
- Autores
- Mulet de Los Reyes, Alexander; Hyde Lord, Victoria; Buemi, María Elena; Gandia, Daniel Enrique; Gómez Déniz, Luis; Noriega Alemán, Maikel; Suárez, Cecilia Ana
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumor is being intensively studied. Here, the automatic three-dimensional segmentation of the GBM is achieved with its related subzones (active tumor, inner necrosis, and peripheral edema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan-Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these preliminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7% and 66.4% for the entire region of interest, active tumor, edema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results presented here evidence that it is possible to achieve the automatic segmentationof this kind of tumor by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluation.
Fil: Mulet de Los Reyes, Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Hyde Lord, Victoria. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Buemi, María Elena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Gandia, Daniel Enrique. No especifíca;
Fil: Gómez Déniz, Luis. Universidad de Las Palmas de Gran Canaria; España
Fil: Noriega Alemán, Maikel. Universidad de Oriente. Facultad de Ingenieria En Telecomunicaciones, Informatica y Biomedica.; Cuba
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina - Materia
-
GLIOBLASTOMA MULTIFORME
AUTOMATIC SEGMENTION
IMAGE PROCESSING
RADIOMICS
ARTIFICIAL NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265372
Ver los metadatos del registro completo
id |
CONICETDig_b7a834e10e8d1899325bb664787722de |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265372 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiformeMulet de Los Reyes, AlexanderHyde Lord, VictoriaBuemi, María ElenaGandia, Daniel EnriqueGómez Déniz, LuisNoriega Alemán, MaikelSuárez, Cecilia AnaGLIOBLASTOMA MULTIFORMEAUTOMATIC SEGMENTIONIMAGE PROCESSINGRADIOMICSARTIFICIAL NEURAL NETWORKShttps://purl.org/becyt/ford/3.5https://purl.org/becyt/ford/3https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumor is being intensively studied. Here, the automatic three-dimensional segmentation of the GBM is achieved with its related subzones (active tumor, inner necrosis, and peripheral edema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan-Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these preliminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7% and 66.4% for the entire region of interest, active tumor, edema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results presented here evidence that it is possible to achieve the automatic segmentationof this kind of tumor by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluation.Fil: Mulet de Los Reyes, Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Hyde Lord, Victoria. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Buemi, María Elena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Gandia, Daniel Enrique. No especifíca;Fil: Gómez Déniz, Luis. Universidad de Las Palmas de Gran Canaria; EspañaFil: Noriega Alemán, Maikel. Universidad de Oriente. Facultad de Ingenieria En Telecomunicaciones, Informatica y Biomedica.; CubaFil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaWiley Blackwell Publishing, Inc2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265372Mulet de Los Reyes, Alexander; Hyde Lord, Victoria; Buemi, María Elena; Gandia, Daniel Enrique; Gómez Déniz, Luis; et al.; Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme; Wiley Blackwell Publishing, Inc; Expert Systems; 41; 9; 3-2024; 1-140266-4720CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/exsy.13598info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:03Zoai:ri.conicet.gov.ar:11336/265372instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:04.177CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme |
title |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme |
spellingShingle |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme Mulet de Los Reyes, Alexander GLIOBLASTOMA MULTIFORME AUTOMATIC SEGMENTION IMAGE PROCESSING RADIOMICS ARTIFICIAL NEURAL NETWORKS |
title_short |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme |
title_full |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme |
title_fullStr |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme |
title_full_unstemmed |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme |
title_sort |
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme |
dc.creator.none.fl_str_mv |
Mulet de Los Reyes, Alexander Hyde Lord, Victoria Buemi, María Elena Gandia, Daniel Enrique Gómez Déniz, Luis Noriega Alemán, Maikel Suárez, Cecilia Ana |
author |
Mulet de Los Reyes, Alexander |
author_facet |
Mulet de Los Reyes, Alexander Hyde Lord, Victoria Buemi, María Elena Gandia, Daniel Enrique Gómez Déniz, Luis Noriega Alemán, Maikel Suárez, Cecilia Ana |
author_role |
author |
author2 |
Hyde Lord, Victoria Buemi, María Elena Gandia, Daniel Enrique Gómez Déniz, Luis Noriega Alemán, Maikel Suárez, Cecilia Ana |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
GLIOBLASTOMA MULTIFORME AUTOMATIC SEGMENTION IMAGE PROCESSING RADIOMICS ARTIFICIAL NEURAL NETWORKS |
topic |
GLIOBLASTOMA MULTIFORME AUTOMATIC SEGMENTION IMAGE PROCESSING RADIOMICS ARTIFICIAL NEURAL NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.5 https://purl.org/becyt/ford/3 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumor is being intensively studied. Here, the automatic three-dimensional segmentation of the GBM is achieved with its related subzones (active tumor, inner necrosis, and peripheral edema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan-Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these preliminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7% and 66.4% for the entire region of interest, active tumor, edema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results presented here evidence that it is possible to achieve the automatic segmentationof this kind of tumor by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluation. Fil: Mulet de Los Reyes, Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Hyde Lord, Victoria. Instituto Tecnológico de Buenos Aires; Argentina Fil: Buemi, María Elena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Gandia, Daniel Enrique. No especifíca; Fil: Gómez Déniz, Luis. Universidad de Las Palmas de Gran Canaria; España Fil: Noriega Alemán, Maikel. Universidad de Oriente. Facultad de Ingenieria En Telecomunicaciones, Informatica y Biomedica.; Cuba Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina |
description |
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumor is being intensively studied. Here, the automatic three-dimensional segmentation of the GBM is achieved with its related subzones (active tumor, inner necrosis, and peripheral edema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan-Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these preliminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7% and 66.4% for the entire region of interest, active tumor, edema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results presented here evidence that it is possible to achieve the automatic segmentationof this kind of tumor by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluation. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265372 Mulet de Los Reyes, Alexander; Hyde Lord, Victoria; Buemi, María Elena; Gandia, Daniel Enrique; Gómez Déniz, Luis; et al.; Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme; Wiley Blackwell Publishing, Inc; Expert Systems; 41; 9; 3-2024; 1-14 0266-4720 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265372 |
identifier_str_mv |
Mulet de Los Reyes, Alexander; Hyde Lord, Victoria; Buemi, María Elena; Gandia, Daniel Enrique; Gómez Déniz, Luis; et al.; Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme; Wiley Blackwell Publishing, Inc; Expert Systems; 41; 9; 3-2024; 1-14 0266-4720 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/exsy.13598 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613662369644544 |
score |
13.070432 |