Balanced Frames: A Useful Tool in Signal Processing with Good Properties

Autores
Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Tarazaga, Pablo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
So far there has not been paid attention to frames that are balanced, i.e. those frames which sum is zero. In this paper we consider balanced frames, and in particular balanced unit norm tight frames, in finite dimensional Hilbert spaces. Here we discover various advantages of balanced unit norm tight frames in signal processing. They give an exact reconstruction in the presence of systematic errors in the transmitted coefficients, and are optimal when these coefficients are corrupted with noises that can have non-zero mean. Moreover, using balanced frames we can know that the transmitted coefficients were perturbed, and we also have an indication of the source of the error. We analyze several properties of these types of frames. We define an equivalence relation in the set of the dual frames of a balanced frame, and use it to show that we can obtain all the duals from the balanced ones. We study the problem of finding the nearest balanced frame to a given frame, characterizing completely its existence and giving its expression. We introduce and study a concept of complement for balanced frames. Finally, we present many examples and methods for constructing balanced unit norm tight frames.
Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Tarazaga, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
BALANCED FRAMES
ERROR DETECTION
NON-WHITE NOISES
SPHERICAL DESIGNS
SYSTEMATIC ERRORS
UNIT NORM TIGHT FRAMES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136894

id CONICETDig_53a7daa060d64bb9e3d0cb30b6fe97ab
oai_identifier_str oai:ri.conicet.gov.ar:11336/136894
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Balanced Frames: A Useful Tool in Signal Processing with Good PropertiesHeineken, Sigrid BettinaMorillas, Patricia MarielaTarazaga, PabloBALANCED FRAMESERROR DETECTIONNON-WHITE NOISESSPHERICAL DESIGNSSYSTEMATIC ERRORSUNIT NORM TIGHT FRAMEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1So far there has not been paid attention to frames that are balanced, i.e. those frames which sum is zero. In this paper we consider balanced frames, and in particular balanced unit norm tight frames, in finite dimensional Hilbert spaces. Here we discover various advantages of balanced unit norm tight frames in signal processing. They give an exact reconstruction in the presence of systematic errors in the transmitted coefficients, and are optimal when these coefficients are corrupted with noises that can have non-zero mean. Moreover, using balanced frames we can know that the transmitted coefficients were perturbed, and we also have an indication of the source of the error. We analyze several properties of these types of frames. We define an equivalence relation in the set of the dual frames of a balanced frame, and use it to show that we can obtain all the duals from the balanced ones. We study the problem of finding the nearest balanced frame to a given frame, characterizing completely its existence and giving its expression. We introduce and study a concept of complement for balanced frames. Finally, we present many examples and methods for constructing balanced unit norm tight frames.Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Tarazaga, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaBirkhauser Verlag Ag2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136894Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Tarazaga, Pablo; Balanced Frames: A Useful Tool in Signal Processing with Good Properties; Birkhauser Verlag Ag; Results In Mathematics; 75; 4; 12-2020; 1-221422-6383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00025-020-01280-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00025-020-01280-7info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1904.00920info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:11:00Zoai:ri.conicet.gov.ar:11336/136894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:11:00.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Balanced Frames: A Useful Tool in Signal Processing with Good Properties
title Balanced Frames: A Useful Tool in Signal Processing with Good Properties
spellingShingle Balanced Frames: A Useful Tool in Signal Processing with Good Properties
Heineken, Sigrid Bettina
BALANCED FRAMES
ERROR DETECTION
NON-WHITE NOISES
SPHERICAL DESIGNS
SYSTEMATIC ERRORS
UNIT NORM TIGHT FRAMES
title_short Balanced Frames: A Useful Tool in Signal Processing with Good Properties
title_full Balanced Frames: A Useful Tool in Signal Processing with Good Properties
title_fullStr Balanced Frames: A Useful Tool in Signal Processing with Good Properties
title_full_unstemmed Balanced Frames: A Useful Tool in Signal Processing with Good Properties
title_sort Balanced Frames: A Useful Tool in Signal Processing with Good Properties
dc.creator.none.fl_str_mv Heineken, Sigrid Bettina
Morillas, Patricia Mariela
Tarazaga, Pablo
author Heineken, Sigrid Bettina
author_facet Heineken, Sigrid Bettina
Morillas, Patricia Mariela
Tarazaga, Pablo
author_role author
author2 Morillas, Patricia Mariela
Tarazaga, Pablo
author2_role author
author
dc.subject.none.fl_str_mv BALANCED FRAMES
ERROR DETECTION
NON-WHITE NOISES
SPHERICAL DESIGNS
SYSTEMATIC ERRORS
UNIT NORM TIGHT FRAMES
topic BALANCED FRAMES
ERROR DETECTION
NON-WHITE NOISES
SPHERICAL DESIGNS
SYSTEMATIC ERRORS
UNIT NORM TIGHT FRAMES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv So far there has not been paid attention to frames that are balanced, i.e. those frames which sum is zero. In this paper we consider balanced frames, and in particular balanced unit norm tight frames, in finite dimensional Hilbert spaces. Here we discover various advantages of balanced unit norm tight frames in signal processing. They give an exact reconstruction in the presence of systematic errors in the transmitted coefficients, and are optimal when these coefficients are corrupted with noises that can have non-zero mean. Moreover, using balanced frames we can know that the transmitted coefficients were perturbed, and we also have an indication of the source of the error. We analyze several properties of these types of frames. We define an equivalence relation in the set of the dual frames of a balanced frame, and use it to show that we can obtain all the duals from the balanced ones. We study the problem of finding the nearest balanced frame to a given frame, characterizing completely its existence and giving its expression. We introduce and study a concept of complement for balanced frames. Finally, we present many examples and methods for constructing balanced unit norm tight frames.
Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Tarazaga, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description So far there has not been paid attention to frames that are balanced, i.e. those frames which sum is zero. In this paper we consider balanced frames, and in particular balanced unit norm tight frames, in finite dimensional Hilbert spaces. Here we discover various advantages of balanced unit norm tight frames in signal processing. They give an exact reconstruction in the presence of systematic errors in the transmitted coefficients, and are optimal when these coefficients are corrupted with noises that can have non-zero mean. Moreover, using balanced frames we can know that the transmitted coefficients were perturbed, and we also have an indication of the source of the error. We analyze several properties of these types of frames. We define an equivalence relation in the set of the dual frames of a balanced frame, and use it to show that we can obtain all the duals from the balanced ones. We study the problem of finding the nearest balanced frame to a given frame, characterizing completely its existence and giving its expression. We introduce and study a concept of complement for balanced frames. Finally, we present many examples and methods for constructing balanced unit norm tight frames.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136894
Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Tarazaga, Pablo; Balanced Frames: A Useful Tool in Signal Processing with Good Properties; Birkhauser Verlag Ag; Results In Mathematics; 75; 4; 12-2020; 1-22
1422-6383
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136894
identifier_str_mv Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Tarazaga, Pablo; Balanced Frames: A Useful Tool in Signal Processing with Good Properties; Birkhauser Verlag Ag; Results In Mathematics; 75; 4; 12-2020; 1-22
1422-6383
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00025-020-01280-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00025-020-01280-7
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1904.00920
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782499442655232
score 12.982451