On the bit complexity of polynomial system solving
- Autores
- Gimenez, Nardo Ariel; Matera, Guillermo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe and analyze a randomized algorithm which solves a polynomial system over the rationals defined by a reduced regular sequence outside a given hypersurface. We show that its bit complexity is roughly quadratic in the Bézout number of the system and linear in its bit size. The algorithm solves the input system modulo a prime number p and applies p-adic lifting. For this purpose, we establish a number of results on the bit length of a “lucky” prime p, namely one for which the reduction of the input system modulo p preserves certain fundamental geometric and algebraic properties of the original system. These results rely on the analysis of Chow forms associated to the set of solutions of the input system and effective arithmetic Nullstellensätze.
Fil: Gimenez, Nardo Ariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BIT COMPLEXITY
CHOW FORM
LIFTING FIBERS
LUCKY PRIMES
POLYNOMIAL SYSTEM SOLVING OVER Q
REDUCED REGULAR SEQUENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/149498
Ver los metadatos del registro completo
id |
CONICETDig_535e3dcc6e21c8b5b46105d6ef3f6f27 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/149498 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the bit complexity of polynomial system solvingGimenez, Nardo ArielMatera, GuillermoBIT COMPLEXITYCHOW FORMLIFTING FIBERSLUCKY PRIMESPOLYNOMIAL SYSTEM SOLVING OVER QREDUCED REGULAR SEQUENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe and analyze a randomized algorithm which solves a polynomial system over the rationals defined by a reduced regular sequence outside a given hypersurface. We show that its bit complexity is roughly quadratic in the Bézout number of the system and linear in its bit size. The algorithm solves the input system modulo a prime number p and applies p-adic lifting. For this purpose, we establish a number of results on the bit length of a “lucky” prime p, namely one for which the reduction of the input system modulo p preserves certain fundamental geometric and algebraic properties of the original system. These results rely on the analysis of Chow forms associated to the set of solutions of the input system and effective arithmetic Nullstellensätze.Fil: Gimenez, Nardo Ariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; ArgentinaFil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149498Gimenez, Nardo Ariel; Matera, Guillermo; On the bit complexity of polynomial system solving; Academic Press Inc Elsevier Science; Journal Of Complexity; 51; 4-2019; 20-670885-064X1090-2708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X18300761info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2018.09.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:42Zoai:ri.conicet.gov.ar:11336/149498instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:43.027CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the bit complexity of polynomial system solving |
title |
On the bit complexity of polynomial system solving |
spellingShingle |
On the bit complexity of polynomial system solving Gimenez, Nardo Ariel BIT COMPLEXITY CHOW FORM LIFTING FIBERS LUCKY PRIMES POLYNOMIAL SYSTEM SOLVING OVER Q REDUCED REGULAR SEQUENCE |
title_short |
On the bit complexity of polynomial system solving |
title_full |
On the bit complexity of polynomial system solving |
title_fullStr |
On the bit complexity of polynomial system solving |
title_full_unstemmed |
On the bit complexity of polynomial system solving |
title_sort |
On the bit complexity of polynomial system solving |
dc.creator.none.fl_str_mv |
Gimenez, Nardo Ariel Matera, Guillermo |
author |
Gimenez, Nardo Ariel |
author_facet |
Gimenez, Nardo Ariel Matera, Guillermo |
author_role |
author |
author2 |
Matera, Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
BIT COMPLEXITY CHOW FORM LIFTING FIBERS LUCKY PRIMES POLYNOMIAL SYSTEM SOLVING OVER Q REDUCED REGULAR SEQUENCE |
topic |
BIT COMPLEXITY CHOW FORM LIFTING FIBERS LUCKY PRIMES POLYNOMIAL SYSTEM SOLVING OVER Q REDUCED REGULAR SEQUENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We describe and analyze a randomized algorithm which solves a polynomial system over the rationals defined by a reduced regular sequence outside a given hypersurface. We show that its bit complexity is roughly quadratic in the Bézout number of the system and linear in its bit size. The algorithm solves the input system modulo a prime number p and applies p-adic lifting. For this purpose, we establish a number of results on the bit length of a “lucky” prime p, namely one for which the reduction of the input system modulo p preserves certain fundamental geometric and algebraic properties of the original system. These results rely on the analysis of Chow forms associated to the set of solutions of the input system and effective arithmetic Nullstellensätze. Fil: Gimenez, Nardo Ariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We describe and analyze a randomized algorithm which solves a polynomial system over the rationals defined by a reduced regular sequence outside a given hypersurface. We show that its bit complexity is roughly quadratic in the Bézout number of the system and linear in its bit size. The algorithm solves the input system modulo a prime number p and applies p-adic lifting. For this purpose, we establish a number of results on the bit length of a “lucky” prime p, namely one for which the reduction of the input system modulo p preserves certain fundamental geometric and algebraic properties of the original system. These results rely on the analysis of Chow forms associated to the set of solutions of the input system and effective arithmetic Nullstellensätze. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/149498 Gimenez, Nardo Ariel; Matera, Guillermo; On the bit complexity of polynomial system solving; Academic Press Inc Elsevier Science; Journal Of Complexity; 51; 4-2019; 20-67 0885-064X 1090-2708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/149498 |
identifier_str_mv |
Gimenez, Nardo Ariel; Matera, Guillermo; On the bit complexity of polynomial system solving; Academic Press Inc Elsevier Science; Journal Of Complexity; 51; 4-2019; 20-67 0885-064X 1090-2708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X18300761 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2018.09.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270092168003584 |
score |
13.13397 |