Time-delayed coupled logistic capacity model in population dynamics
- Autores
- Caceres Garcia Faure, Manuel Osvaldo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study proposes a delay-coupled system based on the logistic equation that models the interaction of a population with its varying environment. The integro-diferential equations of the model are presented in terms of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are presented, and analytical conclusions have been done in terms of the two parameters of the model.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Time Delayed
Logistic Equation
Population Dynamics
Stability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32928
Ver los metadatos del registro completo
| id |
CONICETDig_52e981ce7ff962a5fa2047863febee87 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32928 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Time-delayed coupled logistic capacity model in population dynamicsCaceres Garcia Faure, Manuel OsvaldoTime DelayedLogistic EquationPopulation DynamicsStabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This study proposes a delay-coupled system based on the logistic equation that models the interaction of a population with its varying environment. The integro-diferential equations of the model are presented in terms of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are presented, and analytical conclusions have been done in terms of the two parameters of the model.Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32928Caceres Garcia Faure, Manuel Osvaldo; Time-delayed coupled logistic capacity model in population dynamics; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 90; 2; 8-2014; 1-10; 0221371063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.022137info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.022137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:14:10Zoai:ri.conicet.gov.ar:11336/32928instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:14:10.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Time-delayed coupled logistic capacity model in population dynamics |
| title |
Time-delayed coupled logistic capacity model in population dynamics |
| spellingShingle |
Time-delayed coupled logistic capacity model in population dynamics Caceres Garcia Faure, Manuel Osvaldo Time Delayed Logistic Equation Population Dynamics Stability |
| title_short |
Time-delayed coupled logistic capacity model in population dynamics |
| title_full |
Time-delayed coupled logistic capacity model in population dynamics |
| title_fullStr |
Time-delayed coupled logistic capacity model in population dynamics |
| title_full_unstemmed |
Time-delayed coupled logistic capacity model in population dynamics |
| title_sort |
Time-delayed coupled logistic capacity model in population dynamics |
| dc.creator.none.fl_str_mv |
Caceres Garcia Faure, Manuel Osvaldo |
| author |
Caceres Garcia Faure, Manuel Osvaldo |
| author_facet |
Caceres Garcia Faure, Manuel Osvaldo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Time Delayed Logistic Equation Population Dynamics Stability |
| topic |
Time Delayed Logistic Equation Population Dynamics Stability |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This study proposes a delay-coupled system based on the logistic equation that models the interaction of a population with its varying environment. The integro-diferential equations of the model are presented in terms of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are presented, and analytical conclusions have been done in terms of the two parameters of the model. Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
This study proposes a delay-coupled system based on the logistic equation that models the interaction of a population with its varying environment. The integro-diferential equations of the model are presented in terms of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are presented, and analytical conclusions have been done in terms of the two parameters of the model. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32928 Caceres Garcia Faure, Manuel Osvaldo; Time-delayed coupled logistic capacity model in population dynamics; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 90; 2; 8-2014; 1-10; 022137 1063-651X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/32928 |
| identifier_str_mv |
Caceres Garcia Faure, Manuel Osvaldo; Time-delayed coupled logistic capacity model in population dynamics; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 90; 2; 8-2014; 1-10; 022137 1063-651X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.022137 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.022137 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426002274222080 |
| score |
13.10058 |