Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
- Autores
- Caceres Garcia Faure, Manuel Osvaldo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Distributed Time-Delay
Non-Linear Population Models
Non-Adiabatic Approach
Relaxation from Unstable States - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32480
Ver los metadatos del registro completo
id |
CONICETDig_07f4d169f0e5b934328c15c35e17f24d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32480 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic DynamicsCaceres Garcia Faure, Manuel OsvaldoDistributed Time-DelayNon-Linear Population ModelsNon-Adiabatic ApproachRelaxation from Unstable Stateshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ.Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32480Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics; Springer; Journal of Statistical Physics; 156; 1; 4-2014; 94-1180022-47151572-9613CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-0993-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-0993-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:52Zoai:ri.conicet.gov.ar:11336/32480instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:52.817CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics |
title |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics |
spellingShingle |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics Caceres Garcia Faure, Manuel Osvaldo Distributed Time-Delay Non-Linear Population Models Non-Adiabatic Approach Relaxation from Unstable States |
title_short |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics |
title_full |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics |
title_fullStr |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics |
title_full_unstemmed |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics |
title_sort |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics |
dc.creator.none.fl_str_mv |
Caceres Garcia Faure, Manuel Osvaldo |
author |
Caceres Garcia Faure, Manuel Osvaldo |
author_facet |
Caceres Garcia Faure, Manuel Osvaldo |
author_role |
author |
dc.subject.none.fl_str_mv |
Distributed Time-Delay Non-Linear Population Models Non-Adiabatic Approach Relaxation from Unstable States |
topic |
Distributed Time-Delay Non-Linear Population Models Non-Adiabatic Approach Relaxation from Unstable States |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ. Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32480 Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics; Springer; Journal of Statistical Physics; 156; 1; 4-2014; 94-118 0022-4715 1572-9613 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32480 |
identifier_str_mv |
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics; Springer; Journal of Statistical Physics; 156; 1; 4-2014; 94-118 0022-4715 1572-9613 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-0993-z info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-0993-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613817185599488 |
score |
13.070432 |