Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics

Autores
Caceres Garcia Faure, Manuel Osvaldo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Distributed Time-Delay
Non-Linear Population Models
Non-Adiabatic Approach
Relaxation from Unstable States
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32480

id CONICETDig_07f4d169f0e5b934328c15c35e17f24d
oai_identifier_str oai:ri.conicet.gov.ar:11336/32480
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic DynamicsCaceres Garcia Faure, Manuel OsvaldoDistributed Time-DelayNon-Linear Population ModelsNon-Adiabatic ApproachRelaxation from Unstable Stateshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ.Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32480Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics; Springer; Journal of Statistical Physics; 156; 1; 4-2014; 94-1180022-47151572-9613CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-0993-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-0993-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:52Zoai:ri.conicet.gov.ar:11336/32480instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:52.817CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
title Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
spellingShingle Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
Caceres Garcia Faure, Manuel Osvaldo
Distributed Time-Delay
Non-Linear Population Models
Non-Adiabatic Approach
Relaxation from Unstable States
title_short Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
title_full Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
title_fullStr Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
title_full_unstemmed Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
title_sort Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics
dc.creator.none.fl_str_mv Caceres Garcia Faure, Manuel Osvaldo
author Caceres Garcia Faure, Manuel Osvaldo
author_facet Caceres Garcia Faure, Manuel Osvaldo
author_role author
dc.subject.none.fl_str_mv Distributed Time-Delay
Non-Linear Population Models
Non-Adiabatic Approach
Relaxation from Unstable States
topic Distributed Time-Delay
Non-Linear Population Models
Non-Adiabatic Approach
Relaxation from Unstable States
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ.
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The stochastic dynamics toward the final attractor in exponential distributed timedelay non-linear models is presented, then the passage time statistic is studied analytically in the small noise approximation. The problem is worked out by going to the associated two-dimensional system. The mean first passage time te from the unstable state for this non-Markovian type of system has been worked out using two different approaches: firstly, by a rigorous adiabatic Markovian approximation (in the small mean delay-time = λ−1); secondly, by introducing the stochastic path perturbation approach to get a non-adiabatic theory for any λ. This first passage time distribution can be written in terms of the important parameters of the models. We have compared both approaches and we have found excellent agreement between them in the adiabatic limit. In addition, using our non-adiabatic approach we predict a crossover and a novel behavior for the relaxation scaling-time as a function of the delay parameter which for λ 1 goes as te ∼ 1/ √λ.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32480
Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics; Springer; Journal of Statistical Physics; 156; 1; 4-2014; 94-118
0022-4715
1572-9613
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32480
identifier_str_mv Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics; Springer; Journal of Statistical Physics; 156; 1; 4-2014; 94-118
0022-4715
1572-9613
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-0993-z
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-0993-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613817185599488
score 13.070432