Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics

Autores
Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions.
Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad San Sebastian.; Chile
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FIRST PASSAGE TIME DISTRIBUTION
FISHER EQUATION
NON-LINEAR POPULATION DYNAMICS
NON-LOCAL LOGISTIC MODELS
RANDOM ESCAPE TIMES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112686

id CONICETDig_1be77aecadaede0f9241b0db7ddac149
oai_identifier_str oai:ri.conicet.gov.ar:11336/112686
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population DynamicsFuentes, Miguel AngelCaceres Garcia Faure, Manuel OsvaldoFIRST PASSAGE TIME DISTRIBUTIONFISHER EQUATIONNON-LINEAR POPULATION DYNAMICSNON-LOCAL LOGISTIC MODELSRANDOM ESCAPE TIMEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions.Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad San Sebastian.; ChileFil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEDP Sciences2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112686Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo; Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics; EDP Sciences; Mathematical Modelling of Natural Phenomena; 10; 6; 7-2015; 48-600973-5348CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/mmnp/201510605info:eu-repo/semantics/altIdentifier/url/https://www.mmnp-journal.org/articles/mmnp/abs/2015/06/mmnp2015106p48/mmnp2015106p48.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:24Zoai:ri.conicet.gov.ar:11336/112686instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:24.851CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
title Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
spellingShingle Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
Fuentes, Miguel Angel
FIRST PASSAGE TIME DISTRIBUTION
FISHER EQUATION
NON-LINEAR POPULATION DYNAMICS
NON-LOCAL LOGISTIC MODELS
RANDOM ESCAPE TIMES
title_short Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
title_full Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
title_fullStr Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
title_full_unstemmed Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
title_sort Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
dc.creator.none.fl_str_mv Fuentes, Miguel Angel
Caceres Garcia Faure, Manuel Osvaldo
author Fuentes, Miguel Angel
author_facet Fuentes, Miguel Angel
Caceres Garcia Faure, Manuel Osvaldo
author_role author
author2 Caceres Garcia Faure, Manuel Osvaldo
author2_role author
dc.subject.none.fl_str_mv FIRST PASSAGE TIME DISTRIBUTION
FISHER EQUATION
NON-LINEAR POPULATION DYNAMICS
NON-LOCAL LOGISTIC MODELS
RANDOM ESCAPE TIMES
topic FIRST PASSAGE TIME DISTRIBUTION
FISHER EQUATION
NON-LINEAR POPULATION DYNAMICS
NON-LOCAL LOGISTIC MODELS
RANDOM ESCAPE TIMES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions.
Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad San Sebastian.; Chile
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112686
Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo; Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics; EDP Sciences; Mathematical Modelling of Natural Phenomena; 10; 6; 7-2015; 48-60
0973-5348
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112686
identifier_str_mv Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo; Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics; EDP Sciences; Mathematical Modelling of Natural Phenomena; 10; 6; 7-2015; 48-60
0973-5348
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/mmnp/201510605
info:eu-repo/semantics/altIdentifier/url/https://www.mmnp-journal.org/articles/mmnp/abs/2015/06/mmnp2015106p48/mmnp2015106p48.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614361033736192
score 13.070432