Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics
- Autores
- Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions.
Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad San Sebastian.; Chile
Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FIRST PASSAGE TIME DISTRIBUTION
FISHER EQUATION
NON-LINEAR POPULATION DYNAMICS
NON-LOCAL LOGISTIC MODELS
RANDOM ESCAPE TIMES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112686
Ver los metadatos del registro completo
id |
CONICETDig_1be77aecadaede0f9241b0db7ddac149 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112686 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population DynamicsFuentes, Miguel AngelCaceres Garcia Faure, Manuel OsvaldoFIRST PASSAGE TIME DISTRIBUTIONFISHER EQUATIONNON-LINEAR POPULATION DYNAMICSNON-LOCAL LOGISTIC MODELSRANDOM ESCAPE TIMEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions.Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad San Sebastian.; ChileFil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEDP Sciences2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112686Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo; Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics; EDP Sciences; Mathematical Modelling of Natural Phenomena; 10; 6; 7-2015; 48-600973-5348CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/mmnp/201510605info:eu-repo/semantics/altIdentifier/url/https://www.mmnp-journal.org/articles/mmnp/abs/2015/06/mmnp2015106p48/mmnp2015106p48.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:24Zoai:ri.conicet.gov.ar:11336/112686instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:24.851CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics |
title |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics |
spellingShingle |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics Fuentes, Miguel Angel FIRST PASSAGE TIME DISTRIBUTION FISHER EQUATION NON-LINEAR POPULATION DYNAMICS NON-LOCAL LOGISTIC MODELS RANDOM ESCAPE TIMES |
title_short |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics |
title_full |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics |
title_fullStr |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics |
title_full_unstemmed |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics |
title_sort |
Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics |
dc.creator.none.fl_str_mv |
Fuentes, Miguel Angel Caceres Garcia Faure, Manuel Osvaldo |
author |
Fuentes, Miguel Angel |
author_facet |
Fuentes, Miguel Angel Caceres Garcia Faure, Manuel Osvaldo |
author_role |
author |
author2 |
Caceres Garcia Faure, Manuel Osvaldo |
author2_role |
author |
dc.subject.none.fl_str_mv |
FIRST PASSAGE TIME DISTRIBUTION FISHER EQUATION NON-LINEAR POPULATION DYNAMICS NON-LOCAL LOGISTIC MODELS RANDOM ESCAPE TIMES |
topic |
FIRST PASSAGE TIME DISTRIBUTION FISHER EQUATION NON-LINEAR POPULATION DYNAMICS NON-LOCAL LOGISTIC MODELS RANDOM ESCAPE TIMES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions. Fil: Fuentes, Miguel Angel. Santa Fe Institute; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad San Sebastian.; Chile Fil: Caceres Garcia Faure, Manuel Osvaldo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112686 Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo; Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics; EDP Sciences; Mathematical Modelling of Natural Phenomena; 10; 6; 7-2015; 48-60 0973-5348 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112686 |
identifier_str_mv |
Fuentes, Miguel Angel; Caceres Garcia Faure, Manuel Osvaldo; Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics; EDP Sciences; Mathematical Modelling of Natural Phenomena; 10; 6; 7-2015; 48-60 0973-5348 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/mmnp/201510605 info:eu-repo/semantics/altIdentifier/url/https://www.mmnp-journal.org/articles/mmnp/abs/2015/06/mmnp2015106p48/mmnp2015106p48.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614361033736192 |
score |
13.070432 |