Scale-invariance underlying the logistic equation and its social applications

Autores
Hernando, A.; Plastino, Ángel Luis
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
Fil: Hernando, A.. Université Paul Sabatier; Francia
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Cientificas; España
Materia
LOGISTIC EQUATION
SCALE- INVARIANCE
SOCIAL SYSTEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23413

id CONICETDig_1a8a7d5dd866d4d3b8fae73ba40055f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/23413
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Scale-invariance underlying the logistic equation and its social applicationsHernando, A.Plastino, Ángel LuisLOGISTIC EQUATIONSCALE- INVARIANCESOCIAL SYSTEMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.Fil: Hernando, A.. Université Paul Sabatier; FranciaFil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Cientificas; EspañaElsevier Science2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23413Hernando, A.; Plastino, Ángel Luis; Scale-invariance underlying the logistic equation and its social applications; Elsevier Science; Physics Letters A; 377; 3-4; 11-2012; 176-1800375-9601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0375960112011310info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2012.10.054info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1204.2422info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:40Zoai:ri.conicet.gov.ar:11336/23413instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:40.674CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Scale-invariance underlying the logistic equation and its social applications
title Scale-invariance underlying the logistic equation and its social applications
spellingShingle Scale-invariance underlying the logistic equation and its social applications
Hernando, A.
LOGISTIC EQUATION
SCALE- INVARIANCE
SOCIAL SYSTEM
title_short Scale-invariance underlying the logistic equation and its social applications
title_full Scale-invariance underlying the logistic equation and its social applications
title_fullStr Scale-invariance underlying the logistic equation and its social applications
title_full_unstemmed Scale-invariance underlying the logistic equation and its social applications
title_sort Scale-invariance underlying the logistic equation and its social applications
dc.creator.none.fl_str_mv Hernando, A.
Plastino, Ángel Luis
author Hernando, A.
author_facet Hernando, A.
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv LOGISTIC EQUATION
SCALE- INVARIANCE
SOCIAL SYSTEM
topic LOGISTIC EQUATION
SCALE- INVARIANCE
SOCIAL SYSTEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
Fil: Hernando, A.. Université Paul Sabatier; Francia
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España. Consejo Superior de Investigaciones Cientificas; España
description On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
publishDate 2012
dc.date.none.fl_str_mv 2012-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23413
Hernando, A.; Plastino, Ángel Luis; Scale-invariance underlying the logistic equation and its social applications; Elsevier Science; Physics Letters A; 377; 3-4; 11-2012; 176-180
0375-9601
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23413
identifier_str_mv Hernando, A.; Plastino, Ángel Luis; Scale-invariance underlying the logistic equation and its social applications; Elsevier Science; Physics Letters A; 377; 3-4; 11-2012; 176-180
0375-9601
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0375960112011310
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2012.10.054
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1204.2422
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613700630085632
score 13.070432