Invariant complex structures on tangent and cotangent Lie groups of dimension six

Autores
Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications.
Fil: Campoamor Stursberg, Otto Ruttwig. No especifíca;
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
COMPLEX STRUCTURES
TANGENT AND COTANGENT LIE ALGEBRAS
PSEUDO-KÄHLER METRICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216107

id CONICETDig_52c96dc5a7c2718e0c07c2bd3fd7c1b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/216107
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Invariant complex structures on tangent and cotangent Lie groups of dimension sixCampoamor Stursberg, Otto RuttwigOvando, Gabriela PaolaCOMPLEX STRUCTURESTANGENT AND COTANGENT LIE ALGEBRASPSEUDO-KÄHLER METRICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications.Fil: Campoamor Stursberg, Otto Ruttwig. No especifíca;Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOsaka Journal Of Mathematics2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216107Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola; Invariant complex structures on tangent and cotangent Lie groups of dimension six; Osaka Journal Of Mathematics; Osaka Journal of Mathematics; 49; 6-2012; 489-5130030-6126CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://docta.ucm.es/handle/20.500.14352/43741info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:33Zoai:ri.conicet.gov.ar:11336/216107instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:33.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Invariant complex structures on tangent and cotangent Lie groups of dimension six
title Invariant complex structures on tangent and cotangent Lie groups of dimension six
spellingShingle Invariant complex structures on tangent and cotangent Lie groups of dimension six
Campoamor Stursberg, Otto Ruttwig
COMPLEX STRUCTURES
TANGENT AND COTANGENT LIE ALGEBRAS
PSEUDO-KÄHLER METRICS
title_short Invariant complex structures on tangent and cotangent Lie groups of dimension six
title_full Invariant complex structures on tangent and cotangent Lie groups of dimension six
title_fullStr Invariant complex structures on tangent and cotangent Lie groups of dimension six
title_full_unstemmed Invariant complex structures on tangent and cotangent Lie groups of dimension six
title_sort Invariant complex structures on tangent and cotangent Lie groups of dimension six
dc.creator.none.fl_str_mv Campoamor Stursberg, Otto Ruttwig
Ovando, Gabriela Paola
author Campoamor Stursberg, Otto Ruttwig
author_facet Campoamor Stursberg, Otto Ruttwig
Ovando, Gabriela Paola
author_role author
author2 Ovando, Gabriela Paola
author2_role author
dc.subject.none.fl_str_mv COMPLEX STRUCTURES
TANGENT AND COTANGENT LIE ALGEBRAS
PSEUDO-KÄHLER METRICS
topic COMPLEX STRUCTURES
TANGENT AND COTANGENT LIE ALGEBRAS
PSEUDO-KÄHLER METRICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications.
Fil: Campoamor Stursberg, Otto Ruttwig. No especifíca;
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216107
Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola; Invariant complex structures on tangent and cotangent Lie groups of dimension six; Osaka Journal Of Mathematics; Osaka Journal of Mathematics; 49; 6-2012; 489-513
0030-6126
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216107
identifier_str_mv Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola; Invariant complex structures on tangent and cotangent Lie groups of dimension six; Osaka Journal Of Mathematics; Osaka Journal of Mathematics; 49; 6-2012; 489-513
0030-6126
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://docta.ucm.es/handle/20.500.14352/43741
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Osaka Journal Of Mathematics
publisher.none.fl_str_mv Osaka Journal Of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613507697344512
score 13.070432