Invariant complex structures on tangent and cotangent Lie groups of dimension six
- Autores
- Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications.
Fil: Campoamor Stursberg, Otto Ruttwig. No especifíca;
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COMPLEX STRUCTURES
TANGENT AND COTANGENT LIE ALGEBRAS
PSEUDO-KÄHLER METRICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216107
Ver los metadatos del registro completo
id |
CONICETDig_52c96dc5a7c2718e0c07c2bd3fd7c1b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216107 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Invariant complex structures on tangent and cotangent Lie groups of dimension sixCampoamor Stursberg, Otto RuttwigOvando, Gabriela PaolaCOMPLEX STRUCTURESTANGENT AND COTANGENT LIE ALGEBRASPSEUDO-KÄHLER METRICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications.Fil: Campoamor Stursberg, Otto Ruttwig. No especifíca;Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOsaka Journal Of Mathematics2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216107Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola; Invariant complex structures on tangent and cotangent Lie groups of dimension six; Osaka Journal Of Mathematics; Osaka Journal of Mathematics; 49; 6-2012; 489-5130030-6126CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://docta.ucm.es/handle/20.500.14352/43741info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:33Zoai:ri.conicet.gov.ar:11336/216107instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:33.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Invariant complex structures on tangent and cotangent Lie groups of dimension six |
title |
Invariant complex structures on tangent and cotangent Lie groups of dimension six |
spellingShingle |
Invariant complex structures on tangent and cotangent Lie groups of dimension six Campoamor Stursberg, Otto Ruttwig COMPLEX STRUCTURES TANGENT AND COTANGENT LIE ALGEBRAS PSEUDO-KÄHLER METRICS |
title_short |
Invariant complex structures on tangent and cotangent Lie groups of dimension six |
title_full |
Invariant complex structures on tangent and cotangent Lie groups of dimension six |
title_fullStr |
Invariant complex structures on tangent and cotangent Lie groups of dimension six |
title_full_unstemmed |
Invariant complex structures on tangent and cotangent Lie groups of dimension six |
title_sort |
Invariant complex structures on tangent and cotangent Lie groups of dimension six |
dc.creator.none.fl_str_mv |
Campoamor Stursberg, Otto Ruttwig Ovando, Gabriela Paola |
author |
Campoamor Stursberg, Otto Ruttwig |
author_facet |
Campoamor Stursberg, Otto Ruttwig Ovando, Gabriela Paola |
author_role |
author |
author2 |
Ovando, Gabriela Paola |
author2_role |
author |
dc.subject.none.fl_str_mv |
COMPLEX STRUCTURES TANGENT AND COTANGENT LIE ALGEBRAS PSEUDO-KÄHLER METRICS |
topic |
COMPLEX STRUCTURES TANGENT AND COTANGENT LIE ALGEBRAS PSEUDO-KÄHLER METRICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications. Fil: Campoamor Stursberg, Otto Ruttwig. No especifíca; Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type T h = h + V , where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on T h for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constrain Jh = V . Whenever is the adjoint representation this kind of complex structures are associated to non singular derivations of h. This fact derives different kind of applications. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216107 Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola; Invariant complex structures on tangent and cotangent Lie groups of dimension six; Osaka Journal Of Mathematics; Osaka Journal of Mathematics; 49; 6-2012; 489-513 0030-6126 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/216107 |
identifier_str_mv |
Campoamor Stursberg, Otto Ruttwig; Ovando, Gabriela Paola; Invariant complex structures on tangent and cotangent Lie groups of dimension six; Osaka Journal Of Mathematics; Osaka Journal of Mathematics; 49; 6-2012; 489-513 0030-6126 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://docta.ucm.es/handle/20.500.14352/43741 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Osaka Journal Of Mathematics |
publisher.none.fl_str_mv |
Osaka Journal Of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613507697344512 |
score |
13.070432 |