Extending invariant complex structures

Autores
Campoamor Stursberg, Rutwig; Cardoso, Isolda Eugenia; Ovando, Gabriela Paola
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the problem of extending a complex structure to a given Lie algebra g, which is firstly defined on an ideal h⊂g. We consider the next situations:his either complex or it is totally real. The next question is to equip g with an additional structure, such as a (non)-definite metric or a symplectic structure and to ask either h is non-degenerate, isotropic, etc. with respect to this structure, by imposing a compatibility assumption. We show that this implies certain constraints on the algebraic structure of g.Constructive examples illustrating this situation are shown, in particular computations in dimension six are given.
Fil: Campoamor Stursberg, Rutwig. Universidad Complutense de Madrid; España
Fil: Cardoso, Isolda Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Complex Structures
Lie Algebras
Extension Problem
Lie Algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84360

id CONICETDig_45ba48e9ae40fc8abf8e4a0a8a9dd6d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/84360
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extending invariant complex structuresCampoamor Stursberg, RutwigCardoso, Isolda EugeniaOvando, Gabriela PaolaComplex StructuresLie AlgebrasExtension ProblemLie Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the problem of extending a complex structure to a given Lie algebra g, which is firstly defined on an ideal h⊂g. We consider the next situations:his either complex or it is totally real. The next question is to equip g with an additional structure, such as a (non)-definite metric or a symplectic structure and to ask either h is non-degenerate, isotropic, etc. with respect to this structure, by imposing a compatibility assumption. We show that this implies certain constraints on the algebraic structure of g.Constructive examples illustrating this situation are shown, in particular computations in dimension six are given.Fil: Campoamor Stursberg, Rutwig. Universidad Complutense de Madrid; EspañaFil: Cardoso, Isolda Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaWorld Scientific2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84360Campoamor Stursberg, Rutwig; Cardoso, Isolda Eugenia; Ovando, Gabriela Paola; Extending invariant complex structures; World Scientific; International Journal Of Mathematics; 26; 11; 10-2015; 1-250129-167XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X15500962info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0129167X15500962info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:30Zoai:ri.conicet.gov.ar:11336/84360instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:31.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extending invariant complex structures
title Extending invariant complex structures
spellingShingle Extending invariant complex structures
Campoamor Stursberg, Rutwig
Complex Structures
Lie Algebras
Extension Problem
Lie Algebras
title_short Extending invariant complex structures
title_full Extending invariant complex structures
title_fullStr Extending invariant complex structures
title_full_unstemmed Extending invariant complex structures
title_sort Extending invariant complex structures
dc.creator.none.fl_str_mv Campoamor Stursberg, Rutwig
Cardoso, Isolda Eugenia
Ovando, Gabriela Paola
author Campoamor Stursberg, Rutwig
author_facet Campoamor Stursberg, Rutwig
Cardoso, Isolda Eugenia
Ovando, Gabriela Paola
author_role author
author2 Cardoso, Isolda Eugenia
Ovando, Gabriela Paola
author2_role author
author
dc.subject.none.fl_str_mv Complex Structures
Lie Algebras
Extension Problem
Lie Algebras
topic Complex Structures
Lie Algebras
Extension Problem
Lie Algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the problem of extending a complex structure to a given Lie algebra g, which is firstly defined on an ideal h⊂g. We consider the next situations:his either complex or it is totally real. The next question is to equip g with an additional structure, such as a (non)-definite metric or a symplectic structure and to ask either h is non-degenerate, isotropic, etc. with respect to this structure, by imposing a compatibility assumption. We show that this implies certain constraints on the algebraic structure of g.Constructive examples illustrating this situation are shown, in particular computations in dimension six are given.
Fil: Campoamor Stursberg, Rutwig. Universidad Complutense de Madrid; España
Fil: Cardoso, Isolda Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We study the problem of extending a complex structure to a given Lie algebra g, which is firstly defined on an ideal h⊂g. We consider the next situations:his either complex or it is totally real. The next question is to equip g with an additional structure, such as a (non)-definite metric or a symplectic structure and to ask either h is non-degenerate, isotropic, etc. with respect to this structure, by imposing a compatibility assumption. We show that this implies certain constraints on the algebraic structure of g.Constructive examples illustrating this situation are shown, in particular computations in dimension six are given.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84360
Campoamor Stursberg, Rutwig; Cardoso, Isolda Eugenia; Ovando, Gabriela Paola; Extending invariant complex structures; World Scientific; International Journal Of Mathematics; 26; 11; 10-2015; 1-25
0129-167X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84360
identifier_str_mv Campoamor Stursberg, Rutwig; Cardoso, Isolda Eugenia; Ovando, Gabriela Paola; Extending invariant complex structures; World Scientific; International Journal Of Mathematics; 26; 11; 10-2015; 1-25
0129-167X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X15500962
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0129167X15500962
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613720438734848
score 13.070432