Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
- Autores
- Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions.
Fil: Colonna, Juan Gabriel. Universidade Federal do Amazonas; Brasil
Fil: Nakamura, Eduardo F.. Universidade Federal do Amazonas; Brasil. Texas A&M University; Estados Unidos
Fil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Universidad de los Andes; Chile - Materia
-
COLORED NOISE
INFORMATION THEORY
PERMUTATION ENTROPY
UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98885
Ver los metadatos del registro completo
id |
CONICETDig_520e494a6449d34a5a72dcabdb109bdc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98885 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran callsColonna, Juan GabrielNakamura, Eduardo F.Rosso, Osvaldo AníbalCOLORED NOISEINFORMATION THEORYPERMUTATION ENTROPYUNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions.Fil: Colonna, Juan Gabriel. Universidade Federal do Amazonas; BrasilFil: Nakamura, Eduardo F.. Universidade Federal do Amazonas; Brasil. Texas A&M University; Estados UnidosFil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Universidad de los Andes; ChilePergamon-Elsevier Science Ltd2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98885Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal; Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 106; 9-2018; 107-1200957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2018.03.062info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417418302197info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:43Zoai:ri.conicet.gov.ar:11336/98885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:43.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls |
title |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls |
spellingShingle |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls Colonna, Juan Gabriel COLORED NOISE INFORMATION THEORY PERMUTATION ENTROPY UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION |
title_short |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls |
title_full |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls |
title_fullStr |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls |
title_full_unstemmed |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls |
title_sort |
Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls |
dc.creator.none.fl_str_mv |
Colonna, Juan Gabriel Nakamura, Eduardo F. Rosso, Osvaldo Aníbal |
author |
Colonna, Juan Gabriel |
author_facet |
Colonna, Juan Gabriel Nakamura, Eduardo F. Rosso, Osvaldo Aníbal |
author_role |
author |
author2 |
Nakamura, Eduardo F. Rosso, Osvaldo Aníbal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COLORED NOISE INFORMATION THEORY PERMUTATION ENTROPY UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION |
topic |
COLORED NOISE INFORMATION THEORY PERMUTATION ENTROPY UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions. Fil: Colonna, Juan Gabriel. Universidade Federal do Amazonas; Brasil Fil: Nakamura, Eduardo F.. Universidade Federal do Amazonas; Brasil. Texas A&M University; Estados Unidos Fil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Universidad de los Andes; Chile |
description |
We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98885 Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal; Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 106; 9-2018; 107-120 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98885 |
identifier_str_mv |
Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal; Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 106; 9-2018; 107-120 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2018.03.062 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417418302197 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268876721618944 |
score |
13.13397 |