Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls

Autores
Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions.
Fil: Colonna, Juan Gabriel. Universidade Federal do Amazonas; Brasil
Fil: Nakamura, Eduardo F.. Universidade Federal do Amazonas; Brasil. Texas A&M University; Estados Unidos
Fil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Universidad de los Andes; Chile
Materia
COLORED NOISE
INFORMATION THEORY
PERMUTATION ENTROPY
UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98885

id CONICETDig_520e494a6449d34a5a72dcabdb109bdc
oai_identifier_str oai:ri.conicet.gov.ar:11336/98885
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Feature evaluation for unsupervised bioacoustic signal segmentation of anuran callsColonna, Juan GabrielNakamura, Eduardo F.Rosso, Osvaldo AníbalCOLORED NOISEINFORMATION THEORYPERMUTATION ENTROPYUNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions.Fil: Colonna, Juan Gabriel. Universidade Federal do Amazonas; BrasilFil: Nakamura, Eduardo F.. Universidade Federal do Amazonas; Brasil. Texas A&M University; Estados UnidosFil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Universidad de los Andes; ChilePergamon-Elsevier Science Ltd2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98885Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal; Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 106; 9-2018; 107-1200957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2018.03.062info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417418302197info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:43Zoai:ri.conicet.gov.ar:11336/98885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:43.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
title Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
spellingShingle Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
Colonna, Juan Gabriel
COLORED NOISE
INFORMATION THEORY
PERMUTATION ENTROPY
UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION
title_short Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
title_full Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
title_fullStr Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
title_full_unstemmed Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
title_sort Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls
dc.creator.none.fl_str_mv Colonna, Juan Gabriel
Nakamura, Eduardo F.
Rosso, Osvaldo Aníbal
author Colonna, Juan Gabriel
author_facet Colonna, Juan Gabriel
Nakamura, Eduardo F.
Rosso, Osvaldo Aníbal
author_role author
author2 Nakamura, Eduardo F.
Rosso, Osvaldo Aníbal
author2_role author
author
dc.subject.none.fl_str_mv COLORED NOISE
INFORMATION THEORY
PERMUTATION ENTROPY
UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION
topic COLORED NOISE
INFORMATION THEORY
PERMUTATION ENTROPY
UNSUPERVISED BIOACOUSTICS SIGNAL SEGMENTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions.
Fil: Colonna, Juan Gabriel. Universidade Federal do Amazonas; Brasil
Fil: Nakamura, Eduardo F.. Universidade Federal do Amazonas; Brasil. Texas A&M University; Estados Unidos
Fil: Rosso, Osvaldo Aníbal. Instituto Universitario del Hospital Italiano de Buenos Aires; Argentina. Universidade Federal de Alagoas; Brasil. Universidad de los Andes; Chile
description We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction has a direct impact on the classification rate. In this work, we assess several new entropy measures including the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In addition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the performance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to-event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or different LLDs, depending on the expected noise conditions.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98885
Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal; Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 106; 9-2018; 107-120
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98885
identifier_str_mv Colonna, Juan Gabriel; Nakamura, Eduardo F.; Rosso, Osvaldo Aníbal; Feature evaluation for unsupervised bioacoustic signal segmentation of anuran calls; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 106; 9-2018; 107-120
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2018.03.062
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417418302197
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268876721618944
score 13.13397