Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier
- Autores
- Redelico, Francisco Oscar; Traversaro Varela, Francisco; García, María del Carmen; Silva, Walter; Rosso, Osvaldo Aníbal; Risk, Marcelo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals.
Fil: Redelico, Francisco Oscar. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: García, María del Carmen. Hospital Italiano; Argentina
Fil: Silva, Walter. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rosso, Osvaldo Aníbal. Hospital Italiano; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Hospital Italiano; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CLASSIFICATION ANALYSIS
ELECTROENCEPHALOGRAPHY
PERMUTATION ENTROPY
PERMUTATION MIN-ENTROPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72557
Ver los metadatos del registro completo
id |
CONICETDig_445de531ad9f23b9c7d18a6f4dab994b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72557 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifierRedelico, Francisco OscarTraversaro Varela, FranciscoGarcía, María del CarmenSilva, WalterRosso, Osvaldo AníbalRisk, MarceloCLASSIFICATION ANALYSISELECTROENCEPHALOGRAPHYPERMUTATION ENTROPYPERMUTATION MIN-ENTROPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals.Fil: Redelico, Francisco Oscar. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: García, María del Carmen. Hospital Italiano; ArgentinaFil: Silva, Walter. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rosso, Osvaldo Aníbal. Hospital Italiano; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Hospital Italiano; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMolecular Diversity Preservation International2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72557Redelico, Francisco Oscar; Traversaro Varela, Francisco; García, María del Carmen; Silva, Walter; Rosso, Osvaldo Aníbal; et al.; Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017; 1-121099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1099-4300/19/2/72info:eu-repo/semantics/altIdentifier/doi/10.3390/e19020072info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:27Zoai:ri.conicet.gov.ar:11336/72557instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:27.775CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
spellingShingle |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier Redelico, Francisco Oscar CLASSIFICATION ANALYSIS ELECTROENCEPHALOGRAPHY PERMUTATION ENTROPY PERMUTATION MIN-ENTROPY |
title_short |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_full |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_fullStr |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_full_unstemmed |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_sort |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
dc.creator.none.fl_str_mv |
Redelico, Francisco Oscar Traversaro Varela, Francisco García, María del Carmen Silva, Walter Rosso, Osvaldo Aníbal Risk, Marcelo |
author |
Redelico, Francisco Oscar |
author_facet |
Redelico, Francisco Oscar Traversaro Varela, Francisco García, María del Carmen Silva, Walter Rosso, Osvaldo Aníbal Risk, Marcelo |
author_role |
author |
author2 |
Traversaro Varela, Francisco García, María del Carmen Silva, Walter Rosso, Osvaldo Aníbal Risk, Marcelo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CLASSIFICATION ANALYSIS ELECTROENCEPHALOGRAPHY PERMUTATION ENTROPY PERMUTATION MIN-ENTROPY |
topic |
CLASSIFICATION ANALYSIS ELECTROENCEPHALOGRAPHY PERMUTATION ENTROPY PERMUTATION MIN-ENTROPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals. Fil: Redelico, Francisco Oscar. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: García, María del Carmen. Hospital Italiano; Argentina Fil: Silva, Walter. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rosso, Osvaldo Aníbal. Hospital Italiano; Argentina. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Hospital Italiano; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72557 Redelico, Francisco Oscar; Traversaro Varela, Francisco; García, María del Carmen; Silva, Walter; Rosso, Osvaldo Aníbal; et al.; Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017; 1-12 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72557 |
identifier_str_mv |
Redelico, Francisco Oscar; Traversaro Varela, Francisco; García, María del Carmen; Silva, Walter; Rosso, Osvaldo Aníbal; et al.; Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier; Molecular Diversity Preservation International; Entropy; 19; 2; 2-2017; 1-12 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1099-4300/19/2/72 info:eu-repo/semantics/altIdentifier/doi/10.3390/e19020072 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269462727753728 |
score |
13.13397 |