Computation with phase oscillators: An oscillatory perceptron model
- Autores
- Kaluza, Pablo Federico
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a perceptron model with processing units consisting of coupled phase oscillators. The processing units are able to compute the input signals through a high order synapse mechanism. We show how a network of these elements can be used in analogy to the classical multilayer feedforward neural network. The main characteristics of the classical multilayer perceptron model are conserved, as for example, the backpropagation algorithm for learning. This model of coupled phase oscillators can be seen as a generic study in order to use different kind of oscillators for computational tasks.
Fil: Kaluza, Pablo Federico. Fritz-Haber-Institut der Max-Planck Gesellschaft. Abteilung Physikalische Chemie; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina - Materia
-
Phase Oscillators
Neural Network
Computational Abilities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3595
Ver los metadatos del registro completo
id |
CONICETDig_0a3147dd22021922c00ee0f0fc432f5d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3595 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computation with phase oscillators: An oscillatory perceptron modelKaluza, Pablo FedericoPhase OscillatorsNeural NetworkComputational Abilitieshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We present a perceptron model with processing units consisting of coupled phase oscillators. The processing units are able to compute the input signals through a high order synapse mechanism. We show how a network of these elements can be used in analogy to the classical multilayer feedforward neural network. The main characteristics of the classical multilayer perceptron model are conserved, as for example, the backpropagation algorithm for learning. This model of coupled phase oscillators can be seen as a generic study in order to use different kind of oscillators for computational tasks.Fil: Kaluza, Pablo Federico. Fritz-Haber-Institut der Max-Planck Gesellschaft. Abteilung Physikalische Chemie; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; ArgentinaElsevier2013-03-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3595Kaluza, Pablo Federico; Computation with phase oscillators: An oscillatory perceptron model; Elsevier; Neurocomputing; 118; 26-3-2013; 127-1310925-2312enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231213003147info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2013.02.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:41:29Zoai:ri.conicet.gov.ar:11336/3595instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:41:29.709CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computation with phase oscillators: An oscillatory perceptron model |
title |
Computation with phase oscillators: An oscillatory perceptron model |
spellingShingle |
Computation with phase oscillators: An oscillatory perceptron model Kaluza, Pablo Federico Phase Oscillators Neural Network Computational Abilities |
title_short |
Computation with phase oscillators: An oscillatory perceptron model |
title_full |
Computation with phase oscillators: An oscillatory perceptron model |
title_fullStr |
Computation with phase oscillators: An oscillatory perceptron model |
title_full_unstemmed |
Computation with phase oscillators: An oscillatory perceptron model |
title_sort |
Computation with phase oscillators: An oscillatory perceptron model |
dc.creator.none.fl_str_mv |
Kaluza, Pablo Federico |
author |
Kaluza, Pablo Federico |
author_facet |
Kaluza, Pablo Federico |
author_role |
author |
dc.subject.none.fl_str_mv |
Phase Oscillators Neural Network Computational Abilities |
topic |
Phase Oscillators Neural Network Computational Abilities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a perceptron model with processing units consisting of coupled phase oscillators. The processing units are able to compute the input signals through a high order synapse mechanism. We show how a network of these elements can be used in analogy to the classical multilayer feedforward neural network. The main characteristics of the classical multilayer perceptron model are conserved, as for example, the backpropagation algorithm for learning. This model of coupled phase oscillators can be seen as a generic study in order to use different kind of oscillators for computational tasks. Fil: Kaluza, Pablo Federico. Fritz-Haber-Institut der Max-Planck Gesellschaft. Abteilung Physikalische Chemie; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza; Argentina |
description |
We present a perceptron model with processing units consisting of coupled phase oscillators. The processing units are able to compute the input signals through a high order synapse mechanism. We show how a network of these elements can be used in analogy to the classical multilayer feedforward neural network. The main characteristics of the classical multilayer perceptron model are conserved, as for example, the backpropagation algorithm for learning. This model of coupled phase oscillators can be seen as a generic study in order to use different kind of oscillators for computational tasks. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3595 Kaluza, Pablo Federico; Computation with phase oscillators: An oscillatory perceptron model; Elsevier; Neurocomputing; 118; 26-3-2013; 127-131 0925-2312 |
url |
http://hdl.handle.net/11336/3595 |
identifier_str_mv |
Kaluza, Pablo Federico; Computation with phase oscillators: An oscillatory perceptron model; Elsevier; Neurocomputing; 118; 26-3-2013; 127-131 0925-2312 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231213003147 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2013.02.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083525645697024 |
score |
13.22299 |