Disjoint hypercyclicity, Sidon sets and weakly mixing operators

Autores
Cardeccia, Rodrigo Alejandro
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that a finite set of natural numbers J satisfies that J∪{0} is not Sidon if and only if for any operator T, the disjoint hypercyclicity of {Tj:j∈J} implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that T⊕T2⊕⋯⊕Tn is hypercyclic for every n.
Fil: Cardeccia, Rodrigo Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
Disjoint hypercyclicity
Sidon Sets
Weakly mixing operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/247515

id CONICETDig_50e59d590b38649dcbe0c919c1b0dada
oai_identifier_str oai:ri.conicet.gov.ar:11336/247515
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Disjoint hypercyclicity, Sidon sets and weakly mixing operatorsCardeccia, Rodrigo AlejandroDisjoint hypercyclicitySidon SetsWeakly mixing operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that a finite set of natural numbers J satisfies that J∪{0} is not Sidon if and only if for any operator T, the disjoint hypercyclicity of {Tj:j∈J} implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that T⊕T2⊕⋯⊕Tn is hypercyclic for every n.Fil: Cardeccia, Rodrigo Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaCambridge University Press2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247515Cardeccia, Rodrigo Alejandro; Disjoint hypercyclicity, Sidon sets and weakly mixing operators; Cambridge University Press; Ergodic Theory And Dynamical Systems; 44; 5; 8-2023; 1315-13290143-3857CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0143385723000548/type/journal_articleinfo:eu-repo/semantics/altIdentifier/doi/10.1017/etds.2023.54info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:20Zoai:ri.conicet.gov.ar:11336/247515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:21.201CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Disjoint hypercyclicity, Sidon sets and weakly mixing operators
title Disjoint hypercyclicity, Sidon sets and weakly mixing operators
spellingShingle Disjoint hypercyclicity, Sidon sets and weakly mixing operators
Cardeccia, Rodrigo Alejandro
Disjoint hypercyclicity
Sidon Sets
Weakly mixing operators
title_short Disjoint hypercyclicity, Sidon sets and weakly mixing operators
title_full Disjoint hypercyclicity, Sidon sets and weakly mixing operators
title_fullStr Disjoint hypercyclicity, Sidon sets and weakly mixing operators
title_full_unstemmed Disjoint hypercyclicity, Sidon sets and weakly mixing operators
title_sort Disjoint hypercyclicity, Sidon sets and weakly mixing operators
dc.creator.none.fl_str_mv Cardeccia, Rodrigo Alejandro
author Cardeccia, Rodrigo Alejandro
author_facet Cardeccia, Rodrigo Alejandro
author_role author
dc.subject.none.fl_str_mv Disjoint hypercyclicity
Sidon Sets
Weakly mixing operators
topic Disjoint hypercyclicity
Sidon Sets
Weakly mixing operators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that a finite set of natural numbers J satisfies that J∪{0} is not Sidon if and only if for any operator T, the disjoint hypercyclicity of {Tj:j∈J} implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that T⊕T2⊕⋯⊕Tn is hypercyclic for every n.
Fil: Cardeccia, Rodrigo Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description We prove that a finite set of natural numbers J satisfies that J∪{0} is not Sidon if and only if for any operator T, the disjoint hypercyclicity of {Tj:j∈J} implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that T⊕T2⊕⋯⊕Tn is hypercyclic for every n.
publishDate 2023
dc.date.none.fl_str_mv 2023-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/247515
Cardeccia, Rodrigo Alejandro; Disjoint hypercyclicity, Sidon sets and weakly mixing operators; Cambridge University Press; Ergodic Theory And Dynamical Systems; 44; 5; 8-2023; 1315-1329
0143-3857
CONICET Digital
CONICET
url http://hdl.handle.net/11336/247515
identifier_str_mv Cardeccia, Rodrigo Alejandro; Disjoint hypercyclicity, Sidon sets and weakly mixing operators; Cambridge University Press; Ergodic Theory And Dynamical Systems; 44; 5; 8-2023; 1315-1329
0143-3857
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0143385723000548/type/journal_article
info:eu-repo/semantics/altIdentifier/doi/10.1017/etds.2023.54
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082989148078080
score 13.22299