Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution
- Autores
- Cantet, Rodolfo Juan Carlos; Birchmeier, Ana Nélida; Steibel, Juan Pedro
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A Markov chain Monte Carlo (MCMC) algorithm to sample an exchangeable covariance matrix, such as the one of the error terms (R0) in a multiple trait animal model withmissing records under normal-inverted Wishart priors is presented. The algorithm (FCG) isbased on a conjugate form of the inverted Wishart density that avoids sampling the missingerror terms. Normal prior densities are assumed for the ‘fixed’ effects and breeding values,whereas the covariance matrices are assumed to follow inverted Wishart distributions. The inverted Wishart prior for the environmental covariance matrix is a product density of all patternsof missing data. The resulting MCMC scheme eliminates the correlation between the sampledmissing residuals and the sampled R0, which in turn has the effect of decreasing the total amountof samples needed to reach convergence. The use of the FCG algorithm in a multiple trait dataset with an extreme pattern of missing records produced a dramatic reduction in the size of theautocorrelations among samples for all lags from 1 to 50, and this increased the effective samplesize from 2.5 to 7 times and reduced the number of samples needed to attain convergence, whencompared with the ‘data augmentation’ algorithm.
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Birchmeier, Ana Nélida. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina
Fil: Steibel, Juan Pedro. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150860
Ver los metadatos del registro completo
id |
CONICETDig_50d0ec59b956403fd4869f8ae7224bc6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150860 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distributionCantet, Rodolfo Juan CarlosBirchmeier, Ana NélidaSteibel, Juan Pedrohttps://purl.org/becyt/ford/4.3https://purl.org/becyt/ford/4A Markov chain Monte Carlo (MCMC) algorithm to sample an exchangeable covariance matrix, such as the one of the error terms (R0) in a multiple trait animal model withmissing records under normal-inverted Wishart priors is presented. The algorithm (FCG) isbased on a conjugate form of the inverted Wishart density that avoids sampling the missingerror terms. Normal prior densities are assumed for the ‘fixed’ effects and breeding values,whereas the covariance matrices are assumed to follow inverted Wishart distributions. The inverted Wishart prior for the environmental covariance matrix is a product density of all patternsof missing data. The resulting MCMC scheme eliminates the correlation between the sampledmissing residuals and the sampled R0, which in turn has the effect of decreasing the total amountof samples needed to reach convergence. The use of the FCG algorithm in a multiple trait dataset with an extreme pattern of missing records produced a dramatic reduction in the size of theautocorrelations among samples for all lags from 1 to 50, and this increased the effective samplesize from 2.5 to 7 times and reduced the number of samples needed to attain convergence, whencompared with the ‘data augmentation’ algorithm.Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Birchmeier, Ana Nélida. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; ArgentinaFil: Steibel, Juan Pedro. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; ArgentinaBioMed Central2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150860Cantet, Rodolfo Juan Carlos; Birchmeier, Ana Nélida; Steibel, Juan Pedro; Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution; BioMed Central; Genetics Selection Evolution; 36; 1; 12-2004; 49-640999-193X1297-9686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://gsejournal.biomedcentral.com/articles/10.1186/1297-9686-36-1-49info:eu-repo/semantics/altIdentifier/doi/10.1186/1297-9686-36-1-49info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:05:48Zoai:ri.conicet.gov.ar:11336/150860instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:05:48.458CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution |
title |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution |
spellingShingle |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution Cantet, Rodolfo Juan Carlos |
title_short |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution |
title_full |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution |
title_fullStr |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution |
title_full_unstemmed |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution |
title_sort |
Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution |
dc.creator.none.fl_str_mv |
Cantet, Rodolfo Juan Carlos Birchmeier, Ana Nélida Steibel, Juan Pedro |
author |
Cantet, Rodolfo Juan Carlos |
author_facet |
Cantet, Rodolfo Juan Carlos Birchmeier, Ana Nélida Steibel, Juan Pedro |
author_role |
author |
author2 |
Birchmeier, Ana Nélida Steibel, Juan Pedro |
author2_role |
author author |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.3 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
A Markov chain Monte Carlo (MCMC) algorithm to sample an exchangeable covariance matrix, such as the one of the error terms (R0) in a multiple trait animal model withmissing records under normal-inverted Wishart priors is presented. The algorithm (FCG) isbased on a conjugate form of the inverted Wishart density that avoids sampling the missingerror terms. Normal prior densities are assumed for the ‘fixed’ effects and breeding values,whereas the covariance matrices are assumed to follow inverted Wishart distributions. The inverted Wishart prior for the environmental covariance matrix is a product density of all patternsof missing data. The resulting MCMC scheme eliminates the correlation between the sampledmissing residuals and the sampled R0, which in turn has the effect of decreasing the total amountof samples needed to reach convergence. The use of the FCG algorithm in a multiple trait dataset with an extreme pattern of missing records produced a dramatic reduction in the size of theautocorrelations among samples for all lags from 1 to 50, and this increased the effective samplesize from 2.5 to 7 times and reduced the number of samples needed to attain convergence, whencompared with the ‘data augmentation’ algorithm. Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Birchmeier, Ana Nélida. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina Fil: Steibel, Juan Pedro. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina |
description |
A Markov chain Monte Carlo (MCMC) algorithm to sample an exchangeable covariance matrix, such as the one of the error terms (R0) in a multiple trait animal model withmissing records under normal-inverted Wishart priors is presented. The algorithm (FCG) isbased on a conjugate form of the inverted Wishart density that avoids sampling the missingerror terms. Normal prior densities are assumed for the ‘fixed’ effects and breeding values,whereas the covariance matrices are assumed to follow inverted Wishart distributions. The inverted Wishart prior for the environmental covariance matrix is a product density of all patternsof missing data. The resulting MCMC scheme eliminates the correlation between the sampledmissing residuals and the sampled R0, which in turn has the effect of decreasing the total amountof samples needed to reach convergence. The use of the FCG algorithm in a multiple trait dataset with an extreme pattern of missing records produced a dramatic reduction in the size of theautocorrelations among samples for all lags from 1 to 50, and this increased the effective samplesize from 2.5 to 7 times and reduced the number of samples needed to attain convergence, whencompared with the ‘data augmentation’ algorithm. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150860 Cantet, Rodolfo Juan Carlos; Birchmeier, Ana Nélida; Steibel, Juan Pedro; Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution; BioMed Central; Genetics Selection Evolution; 36; 1; 12-2004; 49-64 0999-193X 1297-9686 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150860 |
identifier_str_mv |
Cantet, Rodolfo Juan Carlos; Birchmeier, Ana Nélida; Steibel, Juan Pedro; Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution; BioMed Central; Genetics Selection Evolution; 36; 1; 12-2004; 49-64 0999-193X 1297-9686 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://gsejournal.biomedcentral.com/articles/10.1186/1297-9686-36-1-49 info:eu-repo/semantics/altIdentifier/doi/10.1186/1297-9686-36-1-49 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083200626982912 |
score |
13.22299 |