Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer
- Autores
- Montoya, Oscar Danilo; de Angelo, Cristian Hernan; Bossio, Guillermo Rubén
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This research addresses the parametric estimation problem in three-phase induction motors by applying a recently developed metaheuristic method known as the generalized normal distribution optimizer (GNDO). A nonlinear programming model based on the steady-state circuit of the induction motor, which uses its Thevenin equivalent, is employed to model the estimation problem. Estimation is carried out by minimizing the mean square error between torque data (obtained from measurements or provided by the manufacturer) and the values calculated with the model. The main advantage of using the GNDO is its effective balance between the exploration and exploitation of the solution space via Gaussian distributions. Numerical tests in two three-phase induction machines confirm the effectiveness of this approach in comparison with the classical genetic algorithm, the particle swarm optimizer, and the sine cosine algorithm. The GNDO approach reports objective function values of about 9.7834×10−14 and 2.6500×10−14, while the sine cosine algorithm reaches solutions of about 4.6327×10−10 and 1.2400×10−6 in both tested motors. All numerical simulations were performed in the MATLAB software, version 2022b.
Fil: Montoya, Oscar Danilo. Universidad Distrital Francisco José de Caldas; Colombia
Fil: de Angelo, Cristian Hernan. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Bossio, Guillermo Rubén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina - Materia
-
Parametric estimation in induction motors
Generalized normal distribution optimizer
Mean square error minimization
Nonlinear programming via metaheuristic optimization
Torque calculation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256651
Ver los metadatos del registro completo
id |
CONICETDig_e8c64a19fb3f76e1c5b7022d6b98db7e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256651 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizerMontoya, Oscar Danilode Angelo, Cristian HernanBossio, Guillermo RubénParametric estimation in induction motorsGeneralized normal distribution optimizerMean square error minimizationNonlinear programming via metaheuristic optimizationTorque calculationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This research addresses the parametric estimation problem in three-phase induction motors by applying a recently developed metaheuristic method known as the generalized normal distribution optimizer (GNDO). A nonlinear programming model based on the steady-state circuit of the induction motor, which uses its Thevenin equivalent, is employed to model the estimation problem. Estimation is carried out by minimizing the mean square error between torque data (obtained from measurements or provided by the manufacturer) and the values calculated with the model. The main advantage of using the GNDO is its effective balance between the exploration and exploitation of the solution space via Gaussian distributions. Numerical tests in two three-phase induction machines confirm the effectiveness of this approach in comparison with the classical genetic algorithm, the particle swarm optimizer, and the sine cosine algorithm. The GNDO approach reports objective function values of about 9.7834×10−14 and 2.6500×10−14, while the sine cosine algorithm reaches solutions of about 4.6327×10−10 and 1.2400×10−6 in both tested motors. All numerical simulations were performed in the MATLAB software, version 2022b.Fil: Montoya, Oscar Danilo. Universidad Distrital Francisco José de Caldas; ColombiaFil: de Angelo, Cristian Hernan. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Bossio, Guillermo Rubén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaElsevier2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256651Montoya, Oscar Danilo; de Angelo, Cristian Hernan; Bossio, Guillermo Rubén; Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer; Elsevier; Results in Engineering; 23; 9-2024; 1-122590-1230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2590123024007011info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rineng.2024.102446info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:29Zoai:ri.conicet.gov.ar:11336/256651instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:29.596CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer |
title |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer |
spellingShingle |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer Montoya, Oscar Danilo Parametric estimation in induction motors Generalized normal distribution optimizer Mean square error minimization Nonlinear programming via metaheuristic optimization Torque calculation |
title_short |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer |
title_full |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer |
title_fullStr |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer |
title_full_unstemmed |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer |
title_sort |
Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer |
dc.creator.none.fl_str_mv |
Montoya, Oscar Danilo de Angelo, Cristian Hernan Bossio, Guillermo Rubén |
author |
Montoya, Oscar Danilo |
author_facet |
Montoya, Oscar Danilo de Angelo, Cristian Hernan Bossio, Guillermo Rubén |
author_role |
author |
author2 |
de Angelo, Cristian Hernan Bossio, Guillermo Rubén |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Parametric estimation in induction motors Generalized normal distribution optimizer Mean square error minimization Nonlinear programming via metaheuristic optimization Torque calculation |
topic |
Parametric estimation in induction motors Generalized normal distribution optimizer Mean square error minimization Nonlinear programming via metaheuristic optimization Torque calculation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This research addresses the parametric estimation problem in three-phase induction motors by applying a recently developed metaheuristic method known as the generalized normal distribution optimizer (GNDO). A nonlinear programming model based on the steady-state circuit of the induction motor, which uses its Thevenin equivalent, is employed to model the estimation problem. Estimation is carried out by minimizing the mean square error between torque data (obtained from measurements or provided by the manufacturer) and the values calculated with the model. The main advantage of using the GNDO is its effective balance between the exploration and exploitation of the solution space via Gaussian distributions. Numerical tests in two three-phase induction machines confirm the effectiveness of this approach in comparison with the classical genetic algorithm, the particle swarm optimizer, and the sine cosine algorithm. The GNDO approach reports objective function values of about 9.7834×10−14 and 2.6500×10−14, while the sine cosine algorithm reaches solutions of about 4.6327×10−10 and 1.2400×10−6 in both tested motors. All numerical simulations were performed in the MATLAB software, version 2022b. Fil: Montoya, Oscar Danilo. Universidad Distrital Francisco José de Caldas; Colombia Fil: de Angelo, Cristian Hernan. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina Fil: Bossio, Guillermo Rubén. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina |
description |
This research addresses the parametric estimation problem in three-phase induction motors by applying a recently developed metaheuristic method known as the generalized normal distribution optimizer (GNDO). A nonlinear programming model based on the steady-state circuit of the induction motor, which uses its Thevenin equivalent, is employed to model the estimation problem. Estimation is carried out by minimizing the mean square error between torque data (obtained from measurements or provided by the manufacturer) and the values calculated with the model. The main advantage of using the GNDO is its effective balance between the exploration and exploitation of the solution space via Gaussian distributions. Numerical tests in two three-phase induction machines confirm the effectiveness of this approach in comparison with the classical genetic algorithm, the particle swarm optimizer, and the sine cosine algorithm. The GNDO approach reports objective function values of about 9.7834×10−14 and 2.6500×10−14, while the sine cosine algorithm reaches solutions of about 4.6327×10−10 and 1.2400×10−6 in both tested motors. All numerical simulations were performed in the MATLAB software, version 2022b. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256651 Montoya, Oscar Danilo; de Angelo, Cristian Hernan; Bossio, Guillermo Rubén; Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer; Elsevier; Results in Engineering; 23; 9-2024; 1-12 2590-1230 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256651 |
identifier_str_mv |
Montoya, Oscar Danilo; de Angelo, Cristian Hernan; Bossio, Guillermo Rubén; Parametric estimation in three-phase induction motors using torque data via the generalized normal distribution optimizer; Elsevier; Results in Engineering; 23; 9-2024; 1-12 2590-1230 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2590123024007011 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rineng.2024.102446 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613310229512192 |
score |
13.070432 |