Initial values for Riccati ODEs from variational PDEs

Autores
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
First-Order Pdes
Hamiltonian Equations
Nonlinear Systems
Optimal Control
Riccati Equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76394

id CONICETDig_4f55af52d95a1e0b3765d404c6d83377
oai_identifier_str oai:ri.conicet.gov.ar:11336/76394
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Initial values for Riccati ODEs from variational PDEsCostanza, VicenteRivadeneira Paz, Pablo SantiagoFirst-Order PdesHamiltonian EquationsNonlinear SystemsOptimal ControlRiccati Equationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaSociedade Brasileira de Matemática Aplicada e Computacional2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76394Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Initial values for Riccati ODEs from variational PDEs; Sociedade Brasileira de Matemática Aplicada e Computacional; Matematica Aplicada E Computacional; 30; 2; 2-2011; 331-3470101-8205CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/S1807-03022011000200005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:36Zoai:ri.conicet.gov.ar:11336/76394instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:36.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Initial values for Riccati ODEs from variational PDEs
title Initial values for Riccati ODEs from variational PDEs
spellingShingle Initial values for Riccati ODEs from variational PDEs
Costanza, Vicente
First-Order Pdes
Hamiltonian Equations
Nonlinear Systems
Optimal Control
Riccati Equations
title_short Initial values for Riccati ODEs from variational PDEs
title_full Initial values for Riccati ODEs from variational PDEs
title_fullStr Initial values for Riccati ODEs from variational PDEs
title_full_unstemmed Initial values for Riccati ODEs from variational PDEs
title_sort Initial values for Riccati ODEs from variational PDEs
dc.creator.none.fl_str_mv Costanza, Vicente
Rivadeneira Paz, Pablo Santiago
author Costanza, Vicente
author_facet Costanza, Vicente
Rivadeneira Paz, Pablo Santiago
author_role author
author2 Rivadeneira Paz, Pablo Santiago
author2_role author
dc.subject.none.fl_str_mv First-Order Pdes
Hamiltonian Equations
Nonlinear Systems
Optimal Control
Riccati Equations
topic First-Order Pdes
Hamiltonian Equations
Nonlinear Systems
Optimal Control
Riccati Equations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76394
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Initial values for Riccati ODEs from variational PDEs; Sociedade Brasileira de Matemática Aplicada e Computacional; Matematica Aplicada E Computacional; 30; 2; 2-2011; 331-347
0101-8205
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76394
identifier_str_mv Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Initial values for Riccati ODEs from variational PDEs; Sociedade Brasileira de Matemática Aplicada e Computacional; Matematica Aplicada E Computacional; 30; 2; 2-2011; 331-347
0101-8205
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1590/S1807-03022011000200005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613253663031296
score 13.070432