Numerical Solution of the Variational PDEs Arising in Optimal Control Theory
- Autores
- Costanza, Vicente; Troparevski, M. I.; Rivadeneira Paz, Pablo Santiago
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An iterative method based on Picard’s approach to ODEs’ initial-value problems is proposed to solve first-order quasilinear PDEs with matrix-valued unknowns, in particular, the recently discovered variational PDEs for the missing boundary values in Hamilton equations of optimal control. As illustrations the iterative numerical solutions are checked against the analytical solutions to some examples arising from optimal control problems for nonlinear systems and regular Lagrangians in nite dimension, and against the numerical solution obtained through standard mathematical software. An application tothe (n+1)-dimensional variational PDEs associated with the n-dimensional finite-horizon time-variant linear-quadratic problem is discussed, due to the key role the LQR plays in two-degrees-of freedom control strategies for nonlinear systems with generalized costs.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Troparevski, M. I.. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Numerical methods for first-order PDEs
Hamiltonian equations
optimal control
nonlinear systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/246039
Ver los metadatos del registro completo
id |
CONICETDig_2f89328a0f88b3f9c9faf64b3062921a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/246039 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical Solution of the Variational PDEs Arising in Optimal Control TheoryCostanza, VicenteTroparevski, M. I.Rivadeneira Paz, Pablo SantiagoNumerical methods for first-order PDEsHamiltonian equationsoptimal controlnonlinear systemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An iterative method based on Picard’s approach to ODEs’ initial-value problems is proposed to solve first-order quasilinear PDEs with matrix-valued unknowns, in particular, the recently discovered variational PDEs for the missing boundary values in Hamilton equations of optimal control. As illustrations the iterative numerical solutions are checked against the analytical solutions to some examples arising from optimal control problems for nonlinear systems and regular Lagrangians in nite dimension, and against the numerical solution obtained through standard mathematical software. An application tothe (n+1)-dimensional variational PDEs associated with the n-dimensional finite-horizon time-variant linear-quadratic problem is discussed, due to the key role the LQR plays in two-degrees-of freedom control strategies for nonlinear systems with generalized costs.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Troparevski, M. I.. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaICMC/USP - SBMAC2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/246039Costanza, Vicente; Troparevski, M. I.; Rivadeneira Paz, Pablo Santiago; Numerical Solution of the Variational PDEs Arising in Optimal Control Theory; ICMC/USP - SBMAC; Computational And Applied Mathematics; 31; 1; 4-2012; 37-580101-8205CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scielo.br/j/cam/a/pw6Vrkk4N95pqTkwR4Lr9By/?lang=eninfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:51Zoai:ri.conicet.gov.ar:11336/246039instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:52.24CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory |
title |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory |
spellingShingle |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory Costanza, Vicente Numerical methods for first-order PDEs Hamiltonian equations optimal control nonlinear systems |
title_short |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory |
title_full |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory |
title_fullStr |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory |
title_full_unstemmed |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory |
title_sort |
Numerical Solution of the Variational PDEs Arising in Optimal Control Theory |
dc.creator.none.fl_str_mv |
Costanza, Vicente Troparevski, M. I. Rivadeneira Paz, Pablo Santiago |
author |
Costanza, Vicente |
author_facet |
Costanza, Vicente Troparevski, M. I. Rivadeneira Paz, Pablo Santiago |
author_role |
author |
author2 |
Troparevski, M. I. Rivadeneira Paz, Pablo Santiago |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Numerical methods for first-order PDEs Hamiltonian equations optimal control nonlinear systems |
topic |
Numerical methods for first-order PDEs Hamiltonian equations optimal control nonlinear systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An iterative method based on Picard’s approach to ODEs’ initial-value problems is proposed to solve first-order quasilinear PDEs with matrix-valued unknowns, in particular, the recently discovered variational PDEs for the missing boundary values in Hamilton equations of optimal control. As illustrations the iterative numerical solutions are checked against the analytical solutions to some examples arising from optimal control problems for nonlinear systems and regular Lagrangians in nite dimension, and against the numerical solution obtained through standard mathematical software. An application tothe (n+1)-dimensional variational PDEs associated with the n-dimensional finite-horizon time-variant linear-quadratic problem is discussed, due to the key role the LQR plays in two-degrees-of freedom control strategies for nonlinear systems with generalized costs. Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Troparevski, M. I.. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
An iterative method based on Picard’s approach to ODEs’ initial-value problems is proposed to solve first-order quasilinear PDEs with matrix-valued unknowns, in particular, the recently discovered variational PDEs for the missing boundary values in Hamilton equations of optimal control. As illustrations the iterative numerical solutions are checked against the analytical solutions to some examples arising from optimal control problems for nonlinear systems and regular Lagrangians in nite dimension, and against the numerical solution obtained through standard mathematical software. An application tothe (n+1)-dimensional variational PDEs associated with the n-dimensional finite-horizon time-variant linear-quadratic problem is discussed, due to the key role the LQR plays in two-degrees-of freedom control strategies for nonlinear systems with generalized costs. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/246039 Costanza, Vicente; Troparevski, M. I.; Rivadeneira Paz, Pablo Santiago; Numerical Solution of the Variational PDEs Arising in Optimal Control Theory; ICMC/USP - SBMAC; Computational And Applied Mathematics; 31; 1; 4-2012; 37-58 0101-8205 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/246039 |
identifier_str_mv |
Costanza, Vicente; Troparevski, M. I.; Rivadeneira Paz, Pablo Santiago; Numerical Solution of the Variational PDEs Arising in Optimal Control Theory; ICMC/USP - SBMAC; Computational And Applied Mathematics; 31; 1; 4-2012; 37-58 0101-8205 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.scielo.br/j/cam/a/pw6Vrkk4N95pqTkwR4Lr9By/?lang=en |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
ICMC/USP - SBMAC |
publisher.none.fl_str_mv |
ICMC/USP - SBMAC |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613859457892352 |
score |
13.070432 |