Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem

Autores
Costanza, Vicente; Neuman, C. E.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The problem of designing strategies for optimal feedback control of nonlinear processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against suboptimal bilinear-quadratic strategies based on power series expansions. Since state variables calculated from Hamiltonian equations may differ from the values of physical states, the proposed control strategy is suboptimal with respect to the original plant.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Neuman, C. E.. Universidad Nacional del Litoral; Argentina
Materia
Optimal Control
Chemical Reactors
Nonlinear Systems
Hamilton Equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20887

id CONICETDig_415e4cdcb6aee07ad75ceaa868a0d28a
oai_identifier_str oai:ri.conicet.gov.ar:11336/20887
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian ProblemCostanza, VicenteNeuman, C. E.Optimal ControlChemical ReactorsNonlinear SystemsHamilton Equationshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The problem of designing strategies for optimal feedback control of nonlinear processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against suboptimal bilinear-quadratic strategies based on power series expansions. Since state variables calculated from Hamiltonian equations may differ from the values of physical states, the proposed control strategy is suboptimal with respect to the original plant.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Neuman, C. E.. Universidad Nacional del Litoral; ArgentinaJohn Wiley & Sons Ltd2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20887Costanza, Vicente; Neuman, C. E.; Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem; John Wiley & Sons Ltd; Optimal Control Applications & Methods; 27; 1; 12-2006; 41-600143-2087CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/oca.772info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/oca.772/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:08Zoai:ri.conicet.gov.ar:11336/20887instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:09.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
title Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
spellingShingle Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
Costanza, Vicente
Optimal Control
Chemical Reactors
Nonlinear Systems
Hamilton Equations
title_short Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
title_full Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
title_fullStr Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
title_full_unstemmed Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
title_sort Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem
dc.creator.none.fl_str_mv Costanza, Vicente
Neuman, C. E.
author Costanza, Vicente
author_facet Costanza, Vicente
Neuman, C. E.
author_role author
author2 Neuman, C. E.
author2_role author
dc.subject.none.fl_str_mv Optimal Control
Chemical Reactors
Nonlinear Systems
Hamilton Equations
topic Optimal Control
Chemical Reactors
Nonlinear Systems
Hamilton Equations
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The problem of designing strategies for optimal feedback control of nonlinear processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against suboptimal bilinear-quadratic strategies based on power series expansions. Since state variables calculated from Hamiltonian equations may differ from the values of physical states, the proposed control strategy is suboptimal with respect to the original plant.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Neuman, C. E.. Universidad Nacional del Litoral; Argentina
description The problem of designing strategies for optimal feedback control of nonlinear processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against suboptimal bilinear-quadratic strategies based on power series expansions. Since state variables calculated from Hamiltonian equations may differ from the values of physical states, the proposed control strategy is suboptimal with respect to the original plant.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20887
Costanza, Vicente; Neuman, C. E.; Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem; John Wiley & Sons Ltd; Optimal Control Applications & Methods; 27; 1; 12-2006; 41-60
0143-2087
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20887
identifier_str_mv Costanza, Vicente; Neuman, C. E.; Optimal Control of Nonlinear Chemical Reactors via an Initial-Value Hamiltonian Problem; John Wiley & Sons Ltd; Optimal Control Applications & Methods; 27; 1; 12-2006; 41-60
0143-2087
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/oca.772
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/oca.772/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613238140960768
score 13.070432