Approximating the Solution to LQR Problems with Bounded Controls
- Autores
- Costanza, Vicente; Rivadeneira Paz, Pablo Santiago
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- New equations involving the unknown final states and initial costates corresponding to families of LQR problems are shown to be useful in calculating optimal strategies when bounded control restrictions are present, and in approximating the solution to fixed-end problems. The missing boundary values of the Hamiltonian equations are obtained by (off-line) solving two uncoupled, first-order, linear partial differential equations for two auxiliary n×n matrices, whose independent variables are the time-horizon duration T and the eigenvalues of the final-penalty matrix S. The solutions to these PDEs give information on the behavior of the whole (T,S)-family of control problems. Illustrations of numerical results are provided and checked against analytical solutions of ´the cheapest stop of a train´ problem.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina - Materia
-
Optimal Control
Constrained Control
Lqr
First Order Pdes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13105
Ver los metadatos del registro completo
id |
CONICETDig_04ece3d287329d6854f825ed27e2ea7d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13105 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximating the Solution to LQR Problems with Bounded ControlsCostanza, VicenteRivadeneira Paz, Pablo SantiagoOptimal ControlConstrained ControlLqrFirst Order Pdeshttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2New equations involving the unknown final states and initial costates corresponding to families of LQR problems are shown to be useful in calculating optimal strategies when bounded control restrictions are present, and in approximating the solution to fixed-end problems. The missing boundary values of the Hamiltonian equations are obtained by (off-line) solving two uncoupled, first-order, linear partial differential equations for two auxiliary n×n matrices, whose independent variables are the time-horizon duration T and the eigenvalues of the final-penalty matrix S. The solutions to these PDEs give information on the behavior of the whole (T,S)-family of control problems. Illustrations of numerical results are provided and checked against analytical solutions of ´the cheapest stop of a train´ problem.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaPlanta Piloto de Ingeniería Química2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13105Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Approximating the Solution to LQR Problems with Bounded Controls; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 4; 8-2011; 339-3510327-07931851-8796enginfo:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/2458jhinfo:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4104/Vol41_04_339.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:35Zoai:ri.conicet.gov.ar:11336/13105instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:35.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximating the Solution to LQR Problems with Bounded Controls |
title |
Approximating the Solution to LQR Problems with Bounded Controls |
spellingShingle |
Approximating the Solution to LQR Problems with Bounded Controls Costanza, Vicente Optimal Control Constrained Control Lqr First Order Pdes |
title_short |
Approximating the Solution to LQR Problems with Bounded Controls |
title_full |
Approximating the Solution to LQR Problems with Bounded Controls |
title_fullStr |
Approximating the Solution to LQR Problems with Bounded Controls |
title_full_unstemmed |
Approximating the Solution to LQR Problems with Bounded Controls |
title_sort |
Approximating the Solution to LQR Problems with Bounded Controls |
dc.creator.none.fl_str_mv |
Costanza, Vicente Rivadeneira Paz, Pablo Santiago |
author |
Costanza, Vicente |
author_facet |
Costanza, Vicente Rivadeneira Paz, Pablo Santiago |
author_role |
author |
author2 |
Rivadeneira Paz, Pablo Santiago |
author2_role |
author |
dc.subject.none.fl_str_mv |
Optimal Control Constrained Control Lqr First Order Pdes |
topic |
Optimal Control Constrained Control Lqr First Order Pdes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
New equations involving the unknown final states and initial costates corresponding to families of LQR problems are shown to be useful in calculating optimal strategies when bounded control restrictions are present, and in approximating the solution to fixed-end problems. The missing boundary values of the Hamiltonian equations are obtained by (off-line) solving two uncoupled, first-order, linear partial differential equations for two auxiliary n×n matrices, whose independent variables are the time-horizon duration T and the eigenvalues of the final-penalty matrix S. The solutions to these PDEs give information on the behavior of the whole (T,S)-family of control problems. Illustrations of numerical results are provided and checked against analytical solutions of ´the cheapest stop of a train´ problem. Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina |
description |
New equations involving the unknown final states and initial costates corresponding to families of LQR problems are shown to be useful in calculating optimal strategies when bounded control restrictions are present, and in approximating the solution to fixed-end problems. The missing boundary values of the Hamiltonian equations are obtained by (off-line) solving two uncoupled, first-order, linear partial differential equations for two auxiliary n×n matrices, whose independent variables are the time-horizon duration T and the eigenvalues of the final-penalty matrix S. The solutions to these PDEs give information on the behavior of the whole (T,S)-family of control problems. Illustrations of numerical results are provided and checked against analytical solutions of ´the cheapest stop of a train´ problem. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13105 Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Approximating the Solution to LQR Problems with Bounded Controls; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 4; 8-2011; 339-351 0327-0793 1851-8796 |
url |
http://hdl.handle.net/11336/13105 |
identifier_str_mv |
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Approximating the Solution to LQR Problems with Bounded Controls; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 4; 8-2011; 339-351 0327-0793 1851-8796 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/2458jh info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4104/Vol41_04_339.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270087387545600 |
score |
13.13397 |